
Rocket SystemBuilder
Extensible Architecture

Client Programmer’s Guide

Version 6.3.0

February 2015
SBX-630-ALL-DG-01

2

Notices
Edition

Publication date: February 2015
Book number: SBX-630-ALL-DG-01
Product version: Version 6.3.0

Copyright
© Rocket Software, Inc. or its affiliates 1989-2015. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

3

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number

United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 800-720-1170
France 0800-180-0882
Germany 08-05-08-05-62
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Customer Portal is the primary method of obtaining support. If you have current
support and maintenance agreements with Rocket Software, you can access the Rocket Customer
Portal and report a problem, download an update, or find answers to in the U2 Knowledgebase.
To log in to the Rocket Customer Portal or to request a Rocket Customer Portal account, go to
www.rocketsoftware.com/support.

In addition to using the Rocket Customer Portal to obtain support, you can send an email to
u2support@rocketsoftware.com or use one of the following telephone numbers.

Country Telephone number

North America +1 800 729 3553
United Kingdom/France +44 (0) 800 773 771 or +44 (0) 20 8867 3691
Europe/Africa +44 (0) 20 8867 3692
Australia +1 800 707 703 or +61 (0) 29412 5450
New Zealand +0800 505 515

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:u2support@rocketsoftware.com

4

Contents

Notices... 2

Corporate information... 3

Part I: Introduction... 7
Chapter 1: Overview... 8

SBClient Architecture... 8
Chapter 2: Client Host Library... 10

Part II: Windows integration.. 11
Chapter 3: Character Windows API... 12

TU.WINDOW.DRAW..12
TU.WINDOW.RESTORE.. 13
TU.WINDOW.SAVE... 13

Chapter 4: Data Transfer API... 14
TU.ANSI.TO.OEM... 14
TU.DOWNLOAD..15
TU.NEW.OUTLOOK.APPOINTMENT.. 16
TU.OEM.TO.ANSI... 18
TU.OUTLOOK.APPOINTMENTS...18
TU.OUTLOOK.GETNEXT.APPOINTMENT.. 20
TU.OUTLOOK.SELECT.APPOINTMENTS...20
TU.PC.DOWNLOAD.. 23
TU.PC.UPLOAD.. 24
TU.TO.EXCEL..26
TU.TO.EXCEL.GRAPH...28
TU.TO.MONOLOG.. 29
TU.TO.WORD... 30
TU.TO.WORD.BOOKMARK...31
TU.TO.WORD.MERGE.. 33
TU.TO.WORD.MERGE.PRINTER...35
TU.UPLOAD..37

Chapter 5: MAPI Mail API..39
TU.MAPI.ADDRESSBOOK...39
TU.MAPI.DELETE... 40
TU.MAPI.FORWARD... 40
TU.MAPI.GETMAIL..41
TU.MAPI.GETMESSAGE..42
TU.MAPI.LOAD... 43
TU.MAPI.REPLY..43
TU.MAPI.REPLYTOALL...44
TU.MAPI.SENDMAIL... 45
TU.MAPI.TERMINATE...46
MAPI Errors..46

Error Messages.. 46
Chapter 6: ODBC API.. 48

TU.SQL.CONNECT... 48
TU.SQL.DISCONNECT..49
TU.SQL.EXEC..49
TU.SQL.MAKEDICT...50
TU.SQL.READ... 50

Chapter 7: PC File Handling API.. 52
TU.CHECK.DIRECTORY.. 52
TU.CHECK.FILE.. 53

Contents

5

TU.CREATE.DIRECTORY.. 53
TU.CREATE.FILE...54
TU.DELETE.DIRECTORY...54
TU.DELETE.FILE...55

Chapter 8: PC Printer Control API... 56
TU.GET.DEFAULT.PRINTER...56
TU.GET.PRINTER.LIST... 57
TU.GET.PRINTER.ROWS.. 57
TU.QUERY.PRINT.OPTIONS.. 58
TU.SELECT.PRINTER... 58
TU.SEND.TO.PRINTER...59
TU.SEND.TO.RAW.PRINTER.. 59
TU.SET.PRINT.OPTIONS... 60

Chapter 9: Windows Process Control API... 62
TU.CHECK.APP.. 62
TU.CLOSE.APP... 62
TU.LAUNCH.APP..63

Chapter 10: Miscellaneous Windows Integration API...65
TCL.SBCVERSION.. 65
TU.CLIENT.GETENV... 65
TU.CLIENT.SETENV..66
TU.EXECUTE.SHELL...66
TU.GET.VERSION... 68
TU.IMAGE... 68
TU.MACRO... 69
TU.RUN.MULTIMEDIA.. 69
TU.RUN.SBO.COMMAND... 70
TU.SESSION.CLOSE...71
TU.VIDEO..71

Part III: Advanced windows integration..72
Chapter 11: Generic object manipulation API.. 73

ROC.CREATE.. 73
ROC.DESTROY..74
ROC.GET...74
ROC.GETHANDLE...75
ROC.SET... 75

Chapter 12: OLE Server interface.. 77
Components.. 77
Host Interface..78
SB+ Server Interface... 78
SBClient-specific... 79

SBClient Events...79
SBClient Methods..80
StartServer().. 80
ShutdownServer()... 82
SendEvent()... 82
CheckServerState()... 85
SetOptions().. 85
GetOptions().. 86

Chapter 13: VBScript API..88
TU.SCRIPT.ADD.CODE... 88
TU.SCRIPT.ADDOBJECT.. 89
TU.SCRIPT.CREATE... 89
TU.SCRIPT.CREATE.MODULE..90
TU.SCRIPT.EVAL.. 90
TU.SCRIPT.EXECUTE... 91

Contents

6

TU.SCRIPT.LAST.ERROR... 91
TU.SCRIPT.LIST.FUNCTIONS.. 91
TU.SCRIPT.LIST.MODULES... 92
TU.SCRIPT.RESET..92
TU.SCRIPT.RUN... 93

Chapter 14: DDE Client API.. 94
TU.DDE.CONNECT... 94
TU.DDE.DISCONNECT... 95
TU.DDE.EXEC.MACRO..96
TU.DDE.GET.ERROR.. 96
TU.DDE.READ...97
TU.DDE.WRITE... 98

Chapter 15: DDE Server Interface..99
DDE Message Components.. 99
Starting SBClient via DDE.. 99

Connecting to the Session Manager..100
Connecting to a Session Topic.. 103

Item Parameters... 104
Base system topic definition item...105
Base session topic definition item.. 106

Part IV: Application GUItization... 107
Chapter 16: GUItization API... 108

TU.FORM.DIALOG.. 108
TU.FORM.HOURGLASS..109
TU.FORM.OPENDIR... 109
TU.FORM.OPENDOS.. 109
TU.FORM.SAVEDOS... 110
TU.FORM.SMARTHOURGLASS.. 111
TU.QUERY.TERMINAL.WINDOW..111
TU.SHOW.TERMINAL.WINDOW...112

Appendix A: Supplementary Information... 113
Demonstration programs...113

About the demonstration programs... 113
Escape sequences...114

About the escape sequences... 115

7

Part I: Introduction
The following topics introduce you to overall concepts built into the client.

8

Chapter 1: Overview
Programmers can enhance traditional host-based applications and run them in SB/XA Browser Client,
SB/XA Rich Client, or SBClient in a Microsoft Windows environment.

Application enhancements fall into two categories:

▪ Windows Integration. This refers to integrating a host-based application within the Windows
desktop without changing the look and feel of the host-based application. The application still
runs in character mode using terminal emulation. Graphical user interface (GUI) objects (for
example, buttons) may be added to provide commonly used functions such as starting and
interacting with Window applications or transferring files between host and PC.

▪ GUItization. This refers to changing the look and feel of the host-based application from character
mode to Windows GUI mode.

Windows integration and GUItization are facilitated by the client host library – a collection of BASIC
subroutines that can be installed on the host.

SBClient Architecture
SBClient employs a client/server architecture that is a logical extension of the basic client/server
model of a character terminal.

In essence, the character terminal is a character display server. It receives commands (escape
sequences), which are interpreted as terminal functions (for example, clear screen or position cursor).
The character terminal also generates events (character strings) to inform the host that the user has
carried out an action, such as pressing a key.

SBClient's client/server model extends this basic model. In the same way that commands are sent to
a character terminal, the Remote Object Server (ROS) receives and processes commands that create
and manipulate user interface objects. Additionally, ROS notifies the host of events such as the user
clicking a button or closing a window.

SBClient is an object-oriented application. It incorporates objects that control a range of functions,
such as Windows integration, GUItization, file transfer, communication, or terminal emulation. The
following diagram shows the structure of SBClient and its relationship with SB+ Server.

SBClient Architecture

9

10

Chapter 2: Client Host Library
The client host library is a collection of BASIC subroutines that allow programmers to integrate host
and PC functionality and to convert character screens and menus to GUI forms.

The library subroutines are essentially collections of escape sequences. The escape sequences are
sent to the PC when the subroutine is invoked, so programmers don’t need to memorize and execute
complicated escape sequences.

Before using the client host library, you must install the host library subroutines on the host. For more
information, see the information about installing the host library in the Using SBClient manual.

Users of the host library subroutines may need to include the following header items from TUINSERT:

▪ SPECIAL.H. Contains equates for special keys, such as Enter and Esc.
▪ ROC.H. Include this header in applications that use the GUItization subroutines of the host library.
▪ OBJECT.H. Include this header in applications that use the GUItization subroutines of the host

library.
▪ USER.INCLUDE.H. A header item for use by developers. This is initially empty, and allows

developers to include their own subroutines.

The Host Commands topic provides details of commands for transferring data between the host and
PC.

Windows integration subroutines fall into the following categories:

▪ DDE Client Subroutines
▪ Data Transfer Subroutines
▪ Windows Process Control Subroutines
▪ PC File Handling Subroutines
▪ PC Printer Control Subroutines
▪ Character Windows Subroutines
▪ SQL Gateway Subroutines
▪ MAPI Mail Subroutines
▪ VBScript
▪ Object Manipulation
▪ Miscellaneous Windows Integration Subroutines

Windows GUItization subroutines fall into the following categories:

▪ GUI Form Handling Subroutines
▪ GUI Menu Handling Subroutines Generic Object Routines
▪ Miscellaneous GUItization Subroutines

The Demonstration Programs topic provides a description of programs included in the client host
library demonstrating various aspects of the library's functions.

11

Part II: Windows integration
The following topics explain how the client integrates with the Windows environment.

12

Chapter 3: Character Windows API
These subroutines are used to control character (non-GUI) windows.

The Character windows API is supported in SBClient only.

Character windows subroutines work in SBClient's character emulation mode. Character windows are
composed from the box drawing characters available with dumb terminal emulations. They are not
related to Windows standard graphical windows.

The character windows subroutines are:

▪ TU.WINDOW.DRAW – Draws a window frame and clears the contents of the window.
▪ TU.WINDOW.RESTORE – Restores a previously saved window.
▪ TU.WINDOW.SAVE – Saves the contents of a window so it can be redisplayed later.

TU.WINDOW.DRAW
Syntax

TU.WINDOW.DRAW(col, row, width, height, frame, shadow)

Description

Draws a window frame and clears the contents of the window.

Parameters

Parameter Description

col [P] Position of window's left-most column (in characters).
row [P] Position of the window's top row (in characters).
width [P] Total width of window (in characters, including horizontal lines).
height [P] Total height of window (in characters, including vertical lines).
frame [P] Frame type. Valid values are described in the following frame table
shadow [P] Shadow type. Valid values are described in the shadow table

frame Values

Value Description

0 No frame.
1 Single line.
2 Double line.

shadow Values

Value Description

0 No shadow.
1 Shadow.

TU.WINDOW.RESTORE

13

See also

TU.WINDOW.RESTORE, TU.WINDOW.SAVE

TU.WINDOW.RESTORE
Syntax

TU.WINDOW.RESTORE(level)

Description

Restores the contents of a previously saved window. Up to 51 window images can be saved on levels
ranging from 0 to 50.

Parameters

Parameter Description

level [P] Level of previously stored window. Valid values range from 0 to 50.

See also

TU.WINDOW.DRAW, TU.WINDOW.SAVE

TU.WINDOW.SAVE
Syntax

TU.WINDOW.SAVE(level, col, row, width, height)

Description

Saves the contents of a window so it can be redisplayed later. Up to 51 window images can be saved
on levels ranging from 0 to 50.

Parameters

Parameter Description

level [P] The level in which the window is stored. Valid values range from 0 to 50.
col [P] Position of the window's left-most column (in characters).
row [P] Top row (in characters).
width [P] Total width of window (in characters).
height [P] Total height of window (in characters).

To save the entire screen, enter 0 for col, row, height, and width.

See also

TU.WINDOW.DRAW, TU.WINDOW.RESTORE

14

Chapter 4: Data Transfer API
These subroutines are used to upload and download data between the PC and the host.

The data transfer API is supported in SB/XA Browser Client, SB/XA Rich Client, and SBClient, with
exceptions as noted.

The data transfer subroutines are:

▪ TU.ANSI.TO.OEM – Converts an ANSI file to an OEM file. Supported in SBClient only.
▪ TU.DOWNLOAD – Downloads a single host record to a PC file.
▪ TU.NEW.OUTLOOK.APPOINTMENT – Creates a new appointment in the Microsoft Outlook

calendar. Supported in SB/XA Browser Client and SB/XA Rich Client only.
▪ TU.OEM.TO.ANSI – Converts an OEM file to an ANSI file. Supported in SBClient only.
▪ TU.OUTLOOK.APPOINTMENTS – Returns appointments from the Microsoft Outlook calendar

between specified dates. Supported in SB/XA Browser Client and SB/XA Rich Client only.
▪ TU.OUTLOOK.GETNEXT.APPOINTMENT – Gets the next item in a list of appointments returned

using TU.OUTLOOK.SELECT.APPOINTMENTS. Supported in SB/XA Browser Client and SB/XA Rich
Client only.

▪ TU.OUTLOOK.SELECT.APPOINTMENTS – Returns a handle to a selection and the first selected item
from a selection of Microsoft Outlook calendar items. Supported in SB/XA Browser Client and SB/
XA Rich Client only.

▪ TU.PC.DOWNLOAD – Transfers multiple host records to PC files.
▪ TU.PC.UPLOAD – Uploads data from a PC file into host records. Supported in SBClient only.
▪ TU.TO.EXCEL – Transfers data from host records to an Excel spreadsheet.
▪ TU.TO.EXCEL.GRAPH – Transfers data from host records to an Excel chart.
▪ TU.TO.MONOLOG – Transfers a phrase to Monolog, the Sound Blaster text-to-speech application.

Supported in SBClient only.
▪ TU.TO.WORD – Transfers data from host records into a Microsoft Word document in tab-delimited

format.
▪ TU.TO.WORD.BOOKMARK – Transfers data from a single host record into a Microsoft Word

bookmark. The record name should be the same as the bookmark name in the document.
Supported in SBClient only.

▪ TU.TO.WORD.MERGE – Downloads data from host records into a Microsoft Word mail merge
document.

▪ TU.TO.WORD.MERGE.PRINTER – Downloads formatted host data into a Microsoft Word mail merge
document and then shows the printer selection dialog by default, allowing the user to choose the
destination printer.

▪ TU.UPLOAD – Uploads a single PC file to a host record.

TU.ANSI.TO.OEM
Syntax

TU.ANSI.TO.OEM(oemfile, ansifile, status)

Description

Converts an ANSI file to an OEM file on the PC. Use this function when transferring from a Windows-
based application to an OEM host. The Windows operating system uses an ANSI character set;
however, most hosts use an OEM character set. The difference between ANSI and OEM character
sets is the high-bit characters. Some languages such as English do not use high-bit characters, and

TU.DOWNLOAD

15

conversion is not normally required. However, languages such as Spanish use high-bit characters for
characters with accent marks, and require conversion.

This subroutine is supported in SBClient only.

Parameters

Parameter Description

ansifile [P] The DOS path and name of the ANSI file to convert to the OEM character
set.

oemfile [P] The name of the file to contain converted file in the OEM character set. If
oemfile is the same as ansifile, the original file is replaced with the converted
file. If oemfile is not specified and ansifile is specified, oemfile is set to
ansifile, and the original file is replaced with the converted file.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed. You can call DDE.GET.ERROR to retrieve details about a failure.

See also

TU.OEM.TO.ANSI

TU.DOWNLOAD
Syntax

TU.DOWNLOAD(data, pcfilename, options, description, status)

Description

Transfers a host record to a PC file. To transfer multiple records, refer to TU.PC.DOWNLOAD and
TU.PC.UPLOAD.

When transferring binary data (for example, bitmaps, help files, and executables) on some host
platforms, the data may become corrupt when you read it from the database. In operating
environments that support directory type files, such as UniData and UniVerse, you use the B option
only to transfer the data and store it in directory type files. If you want to store data in hash files or
your system does not support directory type files, you must hex-encode the data.

Parameters

Parameter Description

data [P] The actual data to be transferred.
pcfilename [P] The name of the PC file in which the data is to be stored.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
description [P] A string describing the data being transferred. The description is

displayed in the client dialog box.
status [R] The result of the transfer. Valid values are described in the status table

Chapter 4: Data Transfer API

16

options values

Value Description

A Append to existing file.
B Data is in binary format.
H Host-initiated transfer.
L Local transfer, simple protocol.
O Overwrite the PC file, if it exists.
R Nonresilient line, acknowledge every packet, do not stream.
V Strip value-marks and subvalue-marks.
X Hexadecimal output.
Z No status window.
7 7-bit data link.
M Minimal status.

status values

Value Description

0 File has been transferred successfully.
1 User abort.
2 Unable to open PC file.
3 PC read error.
4 Communication error.
5 Retry limit exceeded.
6 PC write error.
7 File transfer not supported.
10 Unknown error.
11 File exists and override not specified.

See also

TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH, TU.TO.MONOLOG,
TU.TO.WORD, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER,
TU.UPLOAD

TU.NEW.OUTLOOK.APPOINTMENT
Syntax

TU.NEW.OUTLOOK.APPOINTMENT(startdate, starttime, endtime, subject,
body, extrafields, status)

Description

Creates a new appointment in the Microsoft Outlook calendar, using OLE.

This subroutine is supported by Microsoft Office 2007 and later. It is dependent on OLE technology, so
it is available in SB/XA Browser Client and SB/XA Rich Client only. It is not supported in SBClient.

TU.NEW.OUTLOOK.APPOINTMENT

17

Parameters

Parameter Description

startdate [P] The date of the appointment.
starttime [P] The time at which the appointment starts.
endtime [P] The time at which the appointment ends.
subject [P] The subject line for this appointment.
body [P] The body text providing more information on the appointment, if any.
extrafields [P] The extra Outlook AppointmentItem fields to set, as described in the

following extrafields table
status Zero indicates that the subroutine ran successfully; nonzero indicates that it

failed.

extrafields attributes

Value Description

Attribute 1 Multivalued list of field names.
Attribute 2 Multivalued list of field values.

Example

[R] Zero indicates that the subroutine ran successfully; nonzero indicates that it failed.

The following example creates a new appointment on the Microsoft Outlook calendar:

*
$INCLUDE DMSKELCODE COMMON
$INCLUDE DMSKELCODE STANDARD.EQU
*
SDATE = DATE()
STIME = TIME() + 1800 ;* Appointment in 1/2 hour
ETIME = STIME + 1800 ;* 1/2 hour appointment
SUBJECT = "Test appointment on ":OCONV(SDATE,"D2/"): " at " : OCONV(STIME,"MTS")
BODY="This is going to be an very exciting meeting."
BODY<-1>="You wouldn't believe how exciting it's going to....ZZZZ"
EXTRA="Location" ; EXTRA<1,2>="Coffee room"
EXTRA<2,1>="Importance"; EXTRA<2,2>= 0; * Low
STATUS = 0
*
CALL TU.NEW.OUTLOOK.APPOINTMENT(SDATE, STIME, ETIME, SUBJECT, BODY, EXTRA, STATUS)
*
IF STATUS THEN
CALL SB.DISP(4, "Failed to add appointment, STATUS=":STATUS)
END ELSE
CALL SB.DISP(4, "Appointment added")
END
*
RETURN

See also

TU.OUTLOOK.APPOINTMENTS, TU.OUTLOOK.GETNEXT.APPOINTMENT,
TU.OUTLOOK.SELECT.APPOINTMENTS

Chapter 4: Data Transfer API

18

TU.OEM.TO.ANSI
Syntax

TU.OEM.TO.ANSI(oemfile, ansifile, status)

Description

Converts an OEM file to an ANSI file on the PC. Use this function when transferring from an OEM host
to a Windows-based application. The Windows operating system uses an ANSI character set; however,
most hosts use an OEM character set. The difference between ANSI and OEM character sets is the high-
bit characters. Some languages such as English do not use high-bit characters, and conversion is not
normally required. However, languages such as Spanish use high-bit characters for characters with
accent marks, and require conversion.

This subroutine is supported in SBClient only.

Parameters

Parameter Description

oemfile [P] The date of the appointment.
ansifile [P] The name of the file to contain the converted file in the ANSI character

set. If ansifile is the same as oemfile, the original file is replaced with the
converted file. If ansifile is not specified and oemfile is specified, ansifile is
set to oemfile, and the original file is replaced with the converted file.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed. You can call DDE.GET.ERROR to retrieve details about a failure.

See also

TU.ANSI.TO.OEM

TU.OUTLOOK.APPOINTMENTS
Syntax

TU.OUTLOOK.APPOINTMENTS(fromdate, todate, summaries, extrafields,
extravals, status)

Description

Returns appointments from the Microsoft Outlook calendar between specified dates, using OLE.

This subroutine is supported by Microsoft Office 2007 and later. It is dependent on OLE technology, so
it is available in SB/XA Browser Client and SB/XA Rich Client only. It is not supported in SBClient.

Parameters

Parameter Description

fromdate [P] The date of the first appointment to return, or "" to start from today’s
date.

todate [P] The date of the last appointment to return, or "" for all appointments
after the fromdate.

TU.OUTLOOK.APPOINTMENTS

19

Parameter Description

summaries [R] Summaries of the appointments found.

One attribute per appointment with the following values:

▪ Start date
▪ Start time
▪ End date
▪ End time
▪ Subject

Note that the returned appointments are not organized in any particular
order.

extrafields [P] The extra Outlook AppointmentItem fields to get. This is a dynamic array
of field names.

extravals [R] The extra Outlook AppointmentItem field values.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Example

The following example demonstrates how to return all appointments for the next seven days:

*
$INCLUDE DMSKELCODE COMMON
$INCLUDE DMSKELCODE STANDARD.EQU
*
FROMDATE="";* Appointments from today
TODATE=DATE()+7 ;* Next 7 days
SUMMARIES=""
EXTRAFIELDS="Body"
EXTRAFIELDS<2>="Location"
EXTRAVALS=""
STATUS = 0
RETURNED.DATA = ""
*
CALL TU.OUTLOOK.APPOINTMENTS(FROMDATE, TODATE, SUMMARIES,
 EXTRAFIELDS, EXTRAVALS, STATUS)
*
IF STATUS THEN
CALL SB.DISP(4, "Failed to get list of appointments, STATUS=":STATUS)
END ELSE
NO.APPS = DCOUNT(SUMMARIES, AM)
CALL SB.DISP(4, NO.APPS:" appointments found")
FOR A = 1 TO NO.APPS
RETURNED.DATA = RETURNED.DATA:SUMMARIES<A,5>:VM
RETURNED.DATA = RETURNED.DATA:" From: ":OCONV(SUMMARIES<A,1>,"D2/"):"
 (":SUMMARIES<A,1>:")":OCONV(SUMMARIES<A,2>, "MTS"): "(":SUMMARIES<A,2>:")":VM
RETURNED.DATA = RETURNED.DATA:" To: ":OCONV(SUMMARIES<A,3>,"D2/"):"
 (":SUMMARIES<A,3>:")":OCONV(SUMMARIES<A,4>, "MTS"): "(":SUMMARIES<A,4>:")":VM
RETURNED.DATA = RETURNED.DATA:" Location: ":EXTRAVALS<A,2>:VM
RETURNED.DATA = RETURNED.DATA:" Body:":VM
RETURNED.DATA = RETURNED.DATA:EXTRAVALS<A,1>:VM
NEXT A
RETURNED.DATA = RETURNED.DATA:"\\\R"
CALL SB.DISP(4,RETURNED.DATA)
END
*

Chapter 4: Data Transfer API

20

RETURN

See also

TU.NEW.OUTLOOK.APPOINTMENT, TU.OUTLOOK.GETNEXT.APPOINTMENT,
TU.OUTLOOK.SELECT.APPOINTMENTS

TU.OUTLOOK.GETNEXT.APPOINTMENT
Syntax

TU.OUTLOOK.GETNEXT.APPOINTMENT(selhandle, itemhandle, status)

Description

Gets the next item in a list of appointments returned using TU.OUTLOOK.SELECT.APPOINTMENTS.

This subroutine is supported by Microsoft Office 2007 and later. It is dependent on OLE technology, so
it is also available in SB/XA Browser Client and SB/XA Rich Client only. It is not supported in SBClient.

Parameters

Parameter Description

selhandle [P] The selection handle returned from
TU.OUTLOOK.SELECT.APPOINTMENTS.

itemhandle [R] The handle to the next item in the list or "" at the end of the list.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Example

Please refer to the example in TU.OUTLOOK.SELECT.APPOINTMENTS, which demonstrates getting the
next item in a list of appointments.

See also

TU.NEW.OUTLOOK.APPOINTMENT, TU.OUTLOOK.SELECT.APPOINTMENTS

TU.OUTLOOK.SELECT.APPOINTMENTS
Syntax

TU.OUTLOOK.SELECT.APPOINTMENTS(sel, selhandle, firstitem, status)

Description

Returns a handle to a selection and the first selected item from a selection of Microsoft Outlook
calendar items, using OLE.

This subroutine is supported by Microsoft Office 2007 and later. It is dependent on OLE technology, so
it is also available in SB/XA Browser Client and SB/XA Rich Client only. It is not supported in SBClient.

TU.OUTLOOK.SELECT.APPOINTMENTS

21

Parameters

Parameter Description

sel [P] A Microsoft Outlook select statement. In the Microsoft Outlook select
format, the field names are placed inside parentheses and the values inside
quotation marks. Dates and times are specified in output format (such as
03/12/2011 11:15AM).

selhandle [R] Returns the selection handle. Must be freed with CALL
ROC.DESTROY(Selhandle, STATUS) when selection is finished. If no
items are selected, the selection handle is set to "". To get items after the
first, call TU.OUTLOOK.GETNEXT with this handle.

firstitem [R] The handle for the first item in the selection. Use ROC.DESTROY when
finished. If no items are selected, returns "".

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

Example

The following example first demonstrates adding an appointment. It then uses
TU.OUTLOOK.SELECT.APPOINTMENTS to select any appointments scheduled at the
same time, and ROC.GET and ROC.SET to update the appointment time. Finally it uses
TU.OUTLOOK.GETNEXT.APPOINTMENT to iterate through any appointments that were scheduled
at the same time and count them.

*
$INCLUDE DMSKELCODE COMMON
$INCLUDE TUINSERT ROC.H
*
CALL SB.DISP(4, "Test adding and changing an Outlook appointment.")
*
SDATE = DATE()+1
STIME = ICONV("3:00pm", "MT");* Appointment at 3 oclock tomorrow
ETIME = STIME + 1800 ;* 1/2 hour appointment
SUBJECT = "Test appointment generated by CHANGE.APPOINTMENT"
BODY="This is just a test appointment that should be scheduled for 4pm."
BODY<-1>="Unfortunately it is first added incorrectly at 3pm, so"
BODY<-1>="TU.OUTLOOK.SELECT.APPOINTMENTS has to be used to get a handle to it so"
BODY<-1>="it can be changed."
EXTRA=""
EXTRA<1,1>="Importance"; EXTRA<1,2>= 0; * Low
STATUS = 0
*
CALL TU.NEW.OUTLOOK.APPOINTMENT(SDATE, STIME, ETIME, SUBJECT, BODY, EXTRA, STATUS)
*
IF STATUS THEN
CALL SB.DISP(4, "Failed to add appointment, STATUS=":STATUS)
END ELSE
CALL SB.DISP(4, "Appointment added tomorrow at 3pm - now to select it and
 change the time to 4pm")
* A more sophisticated select with the subject as well could be used to make sure
* we get the correct appointment, but here we want to show how to check parameters
* from the results.
SEL="[Start] = '":OCONV(SDATE,"D2/"):" ":OCONV(STIME,"MT"):"'"
CALL TU.OUTLOOK.SELECT.APPOINTMENTS(SEL, SELHANDLE, FIRSTITEM, STATUS)
IF STATUS THEN
CALL SB.DISP(4, "Failed to select the appointment")
END ELSE
IF SELHANDLE = "" THEN

Chapter 4: Data Transfer API

22

CALL SB.DISP(4, "No items selected.")
END ELSE
CHECK.SUBJECT = ""
CALL ROC.GET(FIRSTITEM, "Subject", CHECK.SUBJECT, STATUS)
IF STATUS THEN
CALL SB.DISP(4, "Unable to retrieve subject line from selected appointment")
END ELSE
IF SUBJECT # CHECK.SUBJECT THEN
CALL SB.DISP(4, "Subject found '":CHECK.SUBJECT:"' was not correct - not updating")
* Note: We could have found the correct subject easily by putting it in the select
* or checking it in the GETNEXT loop below.
END ELSE
* Times must be converted to OLE time using the following formula
SHOULD.START = (SDATE + 24837) + (IConv("4:00pm","MT")/86400)
SHOULD.END = (SDATE + 24837) + (IConv("4:30pm","MT")/86400)
ATTR = "Start" ; VALS = SHOULD.START
ATTR = ATTR : ROC.US : "End" ; VALS = VALS : ROC.US : SHOULD.END
ATTR = ATTR : ROC.US : "Subject"; VALS = VALS : ROC.US : (SUBJECT:" (updated version)")
CALL ROC.SET(FIRSTITEM, ATTR, VALS, STATUS)
IF STATUS THEN
CALL SB.DISP(4, "Failed to update the appointment")
END ELSE
* Need to save item back to Outlook to update it
CALL ROC.GET(FIRSTITEM, "Save","", STATUS)
IF STATUS THEN
CALL SB.DISP(4, "Failed to save updated appointment")
END ELSE
CALL SB.DISP(4, "Appointment updated to new time 4pm")
END
END
END
END
END
*
IF SELHANDLE # "" THEN
*
* Get rid of first item as it is not longer required
CALL ROC.DESTROY(FIRSTITEM, STATUS)
*
* Check if there were other items that matched the selection
OTHERS = 0
LOOP
CALL TU.OUTLOOK.GETNEXT.APPOINTMENT(SELHANDLE, ITEMHANDLE, STATUS)
UNTIL ITEMHANDLE = "" OR STATUS # 0 DO
* Get rid of handle, we just are counting them in this
* Demonstration
CALL ROC.DESTROY(ITEMHANDLE, STATUS)
OTHERS = OTHERS + 1
REPEAT
*
IF OTHERS > 0 THEN
CALL SB.DISP(4, "There were ":OTHERS:" other appointments at the same time selected
 but ignored")
END
*
* Get rid of selection handle returned
CALL ROC.DESTROY(SELHANDLE, STATUS)
END
END
END
*

TU.PC.DOWNLOAD

23

RETURN*

See also

TU.NEW.OUTLOOK.APPOINTMENT, TU.OUTLOOK.APPOINTMENTS,
TU.OUTLOOK.GETNEXT.APPOINTMENT

TU.PC.DOWNLOAD
Syntax

TU.PC.DOWNLOAD(hostfilename, fieldlist, selection, pcfilename,
separators, options, description, status)

Description

Transfers multiple host records to a PC file. TU.PC.DOWNLOAD invokes TU.DOWNLOAD to perform
the actual download for each record.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which records are to be downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded. The definitions can

include the modifiers BREAK-ON and TOTAL, which mean the same as they
do in the database query language. The TOTAL-SUPP modifier suppresses
the output of a grand total at the end of the file. To transfer a complete
record, set this parameter to null.

selection [P] The selection criteria by which the records are screened. Records that
meet the selection criteria are selected for downloading. If the record list has
been selected previously, selection can be GET-LIST listname.
BY-EXP selections are not supported.

pcfilename [P] The name of the PC file in which the data is to be stored.
separators [P] A flag indicating what field separators are to be used in the PC file. Valid

values are described in the separators table.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
description [P] A string describing the data being transferred. The description is

displayed in the client dialog box.
status [R] The result of the transfer. Valid values are described in the status table.

separators values

Value Description

0 No delimiters, fixed length based on dictionary.
1 Strings in quotes, commas between data.
2 Tabs between fields.
3 Spaces between fields.
4 No field separators, single record transfer.

Chapter 4: Data Transfer API

24

options values

Value Description

A Append to existing file.
B Data is in binary format.
H Host-initiated transfer.
L Local transfer, simple protocol.
O Overwrite the PC file, if it exists.
R Nonresilient line, acknowledge every packet, do not stream.
V Strip value-marks and subvalue-marks.
X Hexadecimal output.
Z No status window.
7 7-bit data link.
0 Add duplicate data for correlative.
1 Insert column headers into data.
2 Insert blank line before data.
M Minimal status.

status values

Value Description

0 File has been transferred successfully.
1 User abort.
2 Unable to open PC file.
3 PC read error.
4 Communication error.
5 Retry limit exceeded.
6 PC write error.
7 File transfer not supported.
10 Unknown error.
11 File exists and override not specified.

See also

TU.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH, TU.TO.MONOLOG, TU.TO.WORD,
TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER, TU.UPLOAD

TU.PC.UPLOAD
Syntax

TU.PC.UPLOAD(hostfilename, fieldlist, pcfilename, recordtype,
separators, options, description, status)

Description

Uploads data from a PC file into host records. TU.PC.UPLOAD invokes TU.UPLOAD to perform the
actual upload for each host record.

TU.PC.UPLOAD

25

This subroutine is fully supported in SBClient; it is also supported in SB/XA Browser Client and SB/XA
Rich Client, with certain restrictions, as noted.

Parameters

Parameter Description

hostfilename [P] The name of the host file into which the data is to be uploaded.
fieldlist [P] List of dictionary field definitions used to build the host record from

incoming PC data. The field definitions determine the property positions
in which the PC field needs to be placed and is also used for any internal
conversions that need to be applied to the data. Field definitions that are
correlatives (I-types) are invalid and cause the subroutine to exit with an
error status.

pcfilename [P] The name of the PC file that contains the data being uploaded.
recordtype [P] A flag indicating how the host record is to be constructed. Values are

described in the recordtype table.
separators [P] A flag indicating the field separators that are used in the PC file. Valid

values are described in the separators table.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
description [P] A string describing the data being transferred. The description is

displayed in the client dialog box.
status [R] The result of the transfer. Valid values are described in the status table.

recordtype values

Value Description

0 Use pcfilename as record ID (the default).
1 Use sequential number as ID.
2 Use first field of record as ID.

separators values

Value Description

0 No delimiters, fixed length based on dictionary. This is the default value.

Separator 0 is not supported in SB/XA Browser Client or SB/XA Rich Client.
1 Strings in quotes, commas between data.
2 Tabs between fields.
3 Spaces between fields.
4 No field separators, single record transfer.

options values

Value Description

B Data is in binary format.
D Debug mode transfer.

This option is not supported in the XUI clients.

Chapter 4: Data Transfer API

26

Value Description

E Error-free protocol.

This option is not supported in the XUI clients.
H Host-initiated transfer.

This is the default option for the XUI clients.
L Local transfer, simple protocol.
O Overwrite record, if it exists.
P Spooler output (interchangeable with S).
R Nonresilient line, acknowledge every packet, do not stream.

This option is not supported in the XUI clients.
S Spooler output (interchangeable with P).

This option is not supported in the XUI clients.
T Text, raw line-by-line, no protocol.

This option is not supported in the XUI clients.
X Hexadecimal output.
Z No status window.
7 7-bit data link.
M Minimal status.

status values

Value Description

0 File has been transferred successfully.
1 User abort.
2 Unable to open PC file.
3 PC read error.
4 Communication error.
5 Retry limit exceeded.
6 PC write error.
7 File transfer not supported.
10 Unknown error.
11 File exists and override not specified.

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH, TU.TO.MONOLOG,
TU.TO.WORD, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER,
TU.UPLOAD

TU.TO.EXCEL
Syntax

TU.TO.EXCEL(hostfilename, fieldlist, selection, options, sheetname,
status)

TU.TO.EXCEL

27

Description

Downloads formatted host data to a Microsoft Excel spreadsheet, using a combination of file transfer
and DDE or OLE.

This subroutine is supported by Microsoft Office 2007 and later. It relies on DDE technology in
SBClient. SB/XA versions 6.1.0 and later provide OLE support for this subroutine in SB/XA Browser
Client and SB/XA Rich Client.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which the data is downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded. The definitions can

include the modifiers BREAK-ON and TOTAL, which mean the same as they
do in database query language. The TOTAL-SUPP modifier suppresses the
output of a grand total at the end of the file.

selection [P] The selection criteria by which the records are screened. Records that
meet the selection criteria are selected for downloading. If the record list has
been selected previously, selection can be GET-LIST listname.

BY-EXP selections are not supported.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
sheetname [P] The name of the Excel worksheet.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

options values

Value Description

C Clear the destination before downloading.
F Use file transfer protocol to send data.
H Transfer heading.
I Convert the file from the OEM character set to the ANSI character set.
M Transfer field masks.
O Overwrite the destination if it exists.
P Print the document on the default printer.
0 Add duplicate data for correlative.
1 Insert column headers into data.
2 Insert blank line before data.

Example

The following example downloads records into an Excel spreadsheet.

INCLUDE TUBP TU.API.H
INCLUDE TUBP SPECIAL.H
*
HOSTFILE = 'CARS'
FLDLIST = "REG MANUF MODEL COLOR RADIO AVAILABLE MILES"
SELECTION = 'BY MANUF BY MODEL BY REG WITH COLOR = "RED" AND WITH AVAILABLE
= "Y"'

Chapter 4: Data Transfer API

28

OPTIONS = 'HOMF'; SHEET = "E:\TEMP\CARS.XLS"; STATUS = 0
CALL TU.TO.EXCEL(HOSTFILE,FLDLIST,SELECTION,OPTIONS,SHEET,STATUS)
IF STATUS THEN CRT "ERROR: ":STATUS ELSE CRT "ok"
END

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL.GRAPH, TU.TO.MONOLOG,
TU.TO.WORD, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER,
TU.UPLOAD

TU.TO.EXCEL.GRAPH
Syntax

TU.TO.EXCEL.GRAPH(hostfilename, fieldlist, selection, options,
sheetname, graphtype, status)

Description

Downloads formatted host data to a Microsoft Excel graph, using a combination of file transfer and
DDE or OLE.

This subroutine is supported by Microsoft Office 2007 and later. It relies on DDE technology in
SBClient. SB/XA versions 6.1.0 and later provide OLE support for this subroutine in SB/XA Browser
Client and SB/XA Rich Client.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which the data is downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded. The definitions can

include the modifiers BREAK-ON and TOTAL, which mean the same as they
do in database query language. The TOTAL-SUPP modifier suppresses the
output of a grand total at the end of the file.

selection [P] The selection criteria by which the records are screened. Records that
meet the selection criteria are selected for downloading. If the record list has
been selected previously, selection can be GET-LIST listname.

BY-EXP selections are not supported.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
sheetname [P] The name of the Excel worksheet.
graphtype [P] The chart type. Valid values are described in the graphtype table.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

options values

Value Description

C Clear the destination before downloading.
F Use file transfer protocol to send data.

TU.TO.MONOLOG

29

Value Description

H Transfer heading.
I Convert the file from the OEM character set to the ANSI character set.
M Transfer field masks.
O Overwrite the destination if it exists.
P Print the document on the default printer.

graphtype values

Value Description

1 AREA
2 BAR
3 COLUMN
4 LINE
5 PIE
6 XYSCATTER
7 3D.AREA
8 3D.COLUMN
9 3D.LINE
10 3D.PIE
11 RADAR
12 3D.BAR
13 3D.SURFACE

Example

The following example downloads records into an Excel chart.

INCLUDE TUBP TU.API.H
INCLUDE TUBP SPECIAL.H
*
HOSTFILE = 'CARS'
FLDLIST = "MANUF TOTAL MILES"
SELECTION = 'BY MANUF BY MODEL BY REG WITH COLOR = "RED" AND WITH AVAILABLE = "Y"'
OPTIONS = 'HOMF'; SHEET = "E:\TEMP\CARS.XLS"; STATUS = 0 ; GRAPH = 5
CALL TU.TO.EXCEL.GRAPH(HOSTFILE, FLDLIST, SELECTION, OPTIONS, SHEET, GRAPH, STATUS)
IF STATUS THEN CRT "ERROR: ":STATUS ELSE CRT "ok"
END

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.MONOLOG, TU.TO.WORD,
TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER, TU.UPLOAD

TU.TO.MONOLOG
Syntax

TU.TO.MONOLOG(phrase, status)

Chapter 4: Data Transfer API

30

Description

Transfers a phrase to Monolog, the Sound Blaster text-to-speech application. You must ensure that
Monolog has DDE enabled.

This subroutine is supported in SBClient only.

Parameters

Parameter Description

phrase [P] The text to be spoken. You may need to experiment with phonetic
spelling to achieve the most accurate pronunciation

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH,
TU.TO.WORD, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER,
TU.UPLOAD

TU.TO.WORD
Syntax

TU.TO.WORD(hostfilename, fieldlist, selection, options, documentname,
status)

Description

Transfers data from a host record into a Microsoft Word document in tab-delimited format, using DDE
or OLE. This data will be converted into a table. This subroutine could be used with the TOTAL/DET-
SUPP options to include a grand total or summary information in a document.

This subroutine is supported by Microsoft Office 2007 and later. It relies on DDE technology in
SBClient. SB/XA versions 6.1.0 and later provide OLE support for this subroutine in SB/XA Browser
Client and SB/XA Rich Client.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which the data is to be downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded. The definitions can

include the modifiers BREAK-ON and TOTAL, which mean the same as they
do in database query language. The TOTAL-SUPP modifier suppresses the
output of a grand total at the end of the file.

selection [P] The selection criteria by which the records are screened. Records that
meet the selection criteria are selected for downloading. If the record list has
been selected previously, selection can be GET-LIST listname.

BY-EXP selections are not supported.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
documentname [P] The name of the Microsoft Word document.

TU.TO.WORD.BOOKMARK

31

Parameter Description

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

options values

Value Description

C Clear the destination before downloading.
H Transfer heading.
I Convert the file from the OEM character set to the ANSI character set.
P Print the document on the default printer.
R Restore the application window at completion.
S Save document.
X Close the Microsoft Word program.
0 Add duplicate data for correlative.
2 Insert blank line between header and data.

Example

The following example places data into a Microsoft Word document. The data is tab-delimited to allow
the data to be easily converted to a table format.

INCLUDE TUBP TU.API.H
INCLUDE TUBP SPECIAL.H
*
HOST = “CARS”; FIELD = “REG MILES COLOR”
DOCUMENTNAME = 'C:\TMP\TU.DOC'
SELECT = ‘WITH COLOR = “RED” AND WITH AVAILABLE = “N”
OPTIONS = “XSRH”; DOC = “D:\TEMP\CARS.DOC”; STATUS = 0
*
CALL TU.TO.WORD (HOST, FIELD, SELECT, OPTIONS, DOC, STATUS)
IF STATUS THEN CRT “ERROR: “: STATUS ELSE CRT “OK”
END

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH,
TU.TO.MONOLOG, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER,
TU.UPLOAD

TU.TO.WORD.BOOKMARK
Syntax

TU.TO.WORD.BOOKMARK(hostfilename, fieldlist, selection, options,
documentname, status)

Description

This function transfers data from a host record to predefined bookmarks inside a Microsoft Word
document, and uses Dynamic Data Exchange (DDE) or Object Linking and Embedding (OLE) as the
vehicle to do this. A typical scenario where you might want to use this function is where you generate

Chapter 4: Data Transfer API

32

invoices using Microsoft Word. You could, for example, store details about the client inside the
database. These details would typically include contact name, client name, and client address. The
TU.TO.BOOKMARK function might be used to transfer a copy of these details to the top of an invoice
created in Microsoft Word for Windows.

Do not use the TU.TO.WORD.BOOKMARK function to retrieve “multiple” records from the database,
such as retrieving the details of several clients.

This subroutine is supported in SBClient only. It is supported by Microsoft Office 2007 and later.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which the data is to be downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded. The definitions can

include the modifiers BREAK-ON and TOTAL, which mean the same as they
do in database query language. The TOTAL-SUPP modifier suppresses the
output of a grand total at the end of the file.

selection [P] The selection criteria by which the records are screened. Records that
meet the selection criteria are selected for downloading. If the record list has
been selected previously, selection can be GET-LIST listname.

BY-EXP selections are not supported.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
documentname [P] The name of the Microsoft Word document.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

options values

Value Description

I Do OEM-to-ANSI conversion.
S Save document.
X Close Microsoft Word.
P Print the document on the default printer.
R Restore the application window at completion.

Example

An example that illustrates the use of TU.TO.WORD.BOOKMARK is provided at the end of this
section. A similar example is also included with the product. To run that example, enter RUN DEMOBP
WORD.BOOKMARK.

Example

1. Create a new account for the purposes of this exercise (any name) and log on to it.
2. Create a file named REPOSIT. We will use this file to store the data (both the dictionaries and

records)
3. Create a programming file named PROGS. You will use this file to store the program that uses the

TU.TO.WORD.BOOKMARK function.
4. Create dictionaries F0, F1, F2, and F3 in the REPOSIT file.

TU.TO.WORD.MERGE

33

5. Now create an item in the REPOSIT file called UDT1. This will be used to store the records for
this example. Create data in this item in three entries.

6. Now that you have the data, you need to create bookmarks called SBC1, SBC2, and SBC3. Place
these where you want the data to appear in the Microsoft Word document.

7. Save the Microsoft Word document with the name SBC3.doc.
8. You are now ready to create the program that will use the data in the REPOSIT file. In

the file PROGS, create a program and call it TEST.WORD.BOOKMARK. Notice that the
TU.TO.WORD.BOOKMARK function uses the parameters host, fieldlist, selection, options,
documentname, and status. These terms are explained in further detail at the beginning of
this topic. Enter the code for the program TEST.WORD.BOOKMARK, and provide the path to
SBC3.doc on your network.

9. Enter RUN PROGS TEST.WORD.BOOKMARK to run the program.
10. Open the Microsoft Word document. The program populates the Microsoft Word document with

the details from the database.

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH,
TU.TO.MONOLOG, TU.TO.WORD, TU.TO.WORD.MERGE, TU.TO.WORD.MERGE.PRINTER, TU.UPLOAD

TU.TO.WORD.MERGE
Syntax

TU.TO.WORD.MERGE(hostfilename, fieldlist, selection, options,
documentname, status)

Description

Transfers data from host records into a Microsoft Word mail merge document, using a combination of
file transfer and DDE or OLE.

This subroutine is supported by Microsoft Office 2007 and later. It relies on DDE technology in
SBClient. SB/XA versions 6.1.0 and later provide OLE support for this subroutine in SB/XA Browser
Client and SB/XA Rich Client.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which the data is to be downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded.
selection [P] The selection criteria by which the records are filtered. Records that

match the selection criteria are selected for downloading. If the record list
has been selected previously, selection can be GET-LIST listname.

BY-EXP selections are not supported.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
documentname [P] The name of the Microsoft Word document. This document must be

created before the transfer is initiated. It must be defined as a mail merge
document, whose data source file is named “merge.doc”. This data source
document must coexist with the merge document.

Chapter 4: Data Transfer API

34

Parameter Description

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

options values

Value Description

I Convert the file from the OEM character set to the ANSI character set.
P Print the document on the default printer.
R Restore the application window at completion.
S Save document.
X Exit Microsoft Word.
0 Add duplicate data for correlative.

Example

The WORD.MERGE example in the DEMOBP file demonstrates use of this routine. The following steps
cover the actions you would typically perform in Microsoft Word and in the client.

1. Create a Microsoft Word document with a table.
2. Save the document with the filename merge.doc.
3. Create a new Microsoft Word document.
4. Select the command Tools > Mail merge.

A dialog box appears.
5. In the Mail Merge Helper dialog box under 1 Main document > Create, select the appropriate

option. For the purpose of this example, choose Form Letters.
A dialog box prompts you to specify whether you want to use the current document or want to
create a new main document.

6. For this exercise, click the Active Window button.
7. From the Mail Merge Helper dialog box under 2 Data source > Get Data, navigate to the location

of merge.doc and select it, and then click the Open button.
An information dialog box appears.

8. Click the Edit Main Document button.
9. Insert the merge fields into the document.
10. Place merge fields as appropriate in the document.
11. If the Mail Merge Helper dialog box is currently open, press the ESC key or click the Cancel button

to close it.
12. Select File > Save As. Specify a filename and save the file at your preferred location.

Note: Both the data source and the merged document must reside in the same directory.

13. Start SB/XA Browser Client, SB/XA Rich Client, or SBClient.
14. Create the UniVerse BASIC or UniBasic code that will be used to run the mail merge. An example

of how this code might look is provided below:

INCLUDE TUBP TU.API.H
INCLUDE TUBP SPECIAL.H
*
HOSTFILE = "CARS"; FIELDLIST = "REG MANUF MODEL MILES"
SELECTION = 'WITH COLOR = "BLACK" AND WITH AVAILABLE = "Y" BY MANUF BY MODEL BY REG'
OPTIONS = ''; DOCUMENT = 'D:\TEMP\TEST.DOC'; STATUS = 0
*
CALL TU.TO.WORD.MERGE(HOSTFILE, FIELDLIST, SELECTION, OPTIONS, DOCUMENT, STATUS)

TU.TO.WORD.MERGE.PRINTER

35

IF STATUS THEN CRT 'ERROR:- ':STATUS ELSE CRT "OK, BYE"
END

15. Run the program by entering the following / command at any prompt:
/B: programname
The client performs the merge operation, which equates to the 3 Merge the data with the
document > Merge step of the Mail Merge Helper dialog box.

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH,
TU.TO.MONOLOG, TU.TO.WORD, TU.TO.WORD.BOOKMARKTU.TO.WORD.MERGE.PRINTER, TU.UPLOAD

TU.TO.WORD.MERGE.PRINTER
Syntax

TU.TO.WORD.MERGE.PRINTER(hostfilename, fieldlist, selection, options,
documentname, status)

Description

Downloads formatted host data into a Microsoft Word mail merge document and then shows the
printer selection dialog by default, allowing the user to choose the destination printer. It uses a
combination of file transfer and DDE or OLE.

This subroutine is supported by Microsoft Office 2007 and later. It relies on DDE technology in
SBClient. SB/XA versions 6.1.0 and later provide OLE support for this subroutine in SB/XA Browser
Client and SB/XA Rich Client.

Parameters

Parameter Description

hostfilename [P] The name of the host file from which the data is to be downloaded.
fieldlist [P] A list of dictionary field definitions to be downloaded.
selection [P] The selection criteria by which the records are filtered. Records that

match the selection criteria are selected for downloading. If the record list
has been selected previously, selection can be GET-LIST listname.

BY-EXP selections are not supported.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.
documentname [P] The name of the Microsoft Word document. This document must be

created before the transfer is initiated. It must be defined as a mail merge
document, whose data source file is named merge.doc. This data source
document must coexist with the merge document.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

options values

Value Description

I Convert the file from the OEM character set to the ANSI character set.

Chapter 4: Data Transfer API

36

Value Description

P Suppress the printer selection dialog, and print the document on the default
printer.

R Restore the application window at completion.
S Save document.
X Exit Microsoft Word.
0 Add duplicate data for correlative.

Example

The WORD.MERGE example in the DEMOBP file demonstrates use of this routine. The following steps
cover the actions you would typically perform in Microsoft Word and in the client.

1. Create a Microsoft Word document with a table.
2. Save the document with the filename merge.doc.
3. Create a new Microsoft Word document.
4. Select the command Tools > Mail merge.

A dialog box appears.
5. In the Mail Merge Helper dialog box under 1 Main document > Create, select the appropriate

option. For the purpose of this example, choose Form Letters.
A dialog box prompts you to specify whether you want to use the current document or want to
create a new main document.

6. For this exercise, click the Active Window button.
7. From the Mail Merge Helper dialog box under 2 Data source > Get Data, navigate to the location

of merge.doc and select it, and then click the Open button.
An information dialog box appears.

8. Click the Edit Main Document button.
9. Insert the merge fields into the document.
10. Place merge fields as appropriate in the document.
11. If the Mail Merge Helper dialog box is currently open, press the ESC key or click the Cancel button

to close it.
12. Select File > Save As. Specify a filename and save the file at your preferred location.

Note: Both the data source and the merged document must reside in the same directory.

13. Start SB/XA Browser Client, SB/XA Rich Client, or SBClient.
14. Create the UniVerse BASIC or UniBasic code that will be used to run the mail merge. An example

of how this code might look is provided below:

INCLUDE TUBP TU.API.H
INCLUDE TUBP SPECIAL.H
*
HOSTFILE = "CARS"; FIELDLIST = "REG MANUF MODEL MILES"
SELECTION = 'WITH COLOR = "BLACK" AND WITH AVAILABLE = "Y" BY MANUF BY MODEL BY REG'
OPTIONS = ''; DOCUMENT = 'D:\TEMP\TEST.DOC'; STATUS = 0
*
CALL TU.TO.WORD.MERGE(HOSTFILE, FIELDLIST, SELECTION, OPTIONS, DOCUMENT, STATUS)
IF STATUS THEN CRT 'ERROR:- ':STATUS ELSE CRT "OK, BYE"
END

15. Run the program by entering the following / command at any prompt:
/B: programname

TU.UPLOAD

37

The client performs the merge operation, which equates to the 3 Merge the data with the
document > Merge step of the Mail Merge Helper dialog box.

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL, TU.TO.EXCEL.GRAPH,
TU.TO.MONOLOG, TU.TO.WORD, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE, TU.UPLOAD

TU.UPLOAD
Syntax

TU.UPLOAD(pcfilename, filehandle, id, options, description, status)

Description

Transfers data from a PC file into a host record. See TU.PC.UPLOAD on uploading multiple files.

When transferring binary data (for example, bitmaps, help files, and executables) on some host
platforms, the data may become corrupt when you write it to the database. In operating environments
that support directory type files, such as UniData and UniVerse, you use the B option only to transfer
the data and store in directory type files. If you want to store data in hash files or your system does not
support directory type files, you must hex-encode the data.

Parameters

Parameter Description

pcfilename [P] The name of the PC file containing the data to be transferred.
filehandle [P] The handle to the host file.
id [P] The host record ID. If null, data is returned in this parameter.
options [P] An array of characters indicating optional transfer details. Valid values

are described in the options table.

In operating environments that support DIR type files, such as UniData and
UniVerse, you use the B option only to transfer the data. You use the X option
(hex encoding) when storing data in hash files.

description [P] A string describing the data being transferred. The description is
displayed the client dialog box.

status [R] The result of the transfer. Valid values are described in the status table.

options values

Value Description

B Data is in binary format.
H Host-initiated transfer.
L Local connect, simple protocol.
P Spooler output (interchangeable with S).
R Nonresilient line, acknowledge every packet, do not stream.
S Spooler output (interchangeable with P).
X Hexadecimal output.
Z No status window.

Chapter 4: Data Transfer API

38

Value Description

7 7-bit data link.

status values

Value Description

0 File has been transferred successfully.
1 User abort.
2 Unable to open PC file.
3 PC read error.
4 Communications error.
5 Retry limit exceeded.
6 PC write error.
7 File transfer not supported.
10 Unknown error.

See also

TU.DOWNLOAD, TU.PC.DOWNLOAD, TU.PC.UPLOAD, TU.TO.EXCEL,
TU.TO.EXCEL.GRAPHTU.TO.MONOLOG, TU.TO.WORD, TU.TO.WORD.BOOKMARK, TU.TO.WORD.MERGE,
TU.TO.WORD.MERGE.PRINTER

39

Chapter 5: MAPI Mail API
Microsoft's Messaging Application Program Interface (MAPI) provides support for messaging in SB/XA
Browser Client, SB/XA Rich Client, and SBClient. MAPI makes the client programs email messaging-
aware; it interfaces SB messaging-based services to Microsoft Outlook.

The MAPI subroutines are used to send and receive email. They make use of the Microsoft MapiSess
and MapiMess OCXs. For these subroutines to work, the 32-bit MAPI Dynamic Link Libraries (DLLs) and
Microsoft Mail must be installed. You can install Microsoft Mail during the Windows operating system
setup, or install it separately from the control panel.

MAPI electronic mail functionality is built into SBClient. SBClient installs and registers the OCXs;
however, the user must still set up a MAPI profile on the client computer.

The same MAPI functionality is available as an optional add-on for SB/XA Browser Client and SB/XA
Rich Client. For steps to install it, see the information about installing SB/XA components, specifically
MAPI for messaging in the XUI clients, in SB/XA Getting Started.

The MAPI mail subroutines are:

▪ TU.MAPI.ADDRESSBOOK – Displays the MAPI address book.
▪ TU.MAPI.DELETE – Deletes the specified message from your inbox.
▪ TU.MAPI.FORWARD – Forwards mail to the specified address.
▪ TU.MAPI.GETMAIL – Gets mail or mail headers from the inbox.
▪ TU.MAPI.GETMESSAGE – Retrieves the specified message (text) from your inbox.
▪ TU.MAPI.LOAD – Instantiates a MAPI session.
▪ TU.MAPI.REPLY – Replies to mail represented by MSGNO and sends to specified address and so on.
▪ TU.MAPI.REPLYTOALL – Replies to all addresses on the mail represented by MSGNO.
▪ TU.MAPI.SENDMAIL – Sends mail via MAPI.
▪ TU.MAPI.TERMINATE – Terminates a MAPI session; to be called after finishing MAPI usage.

TU.MAPI.ADDRESSBOOK
Syntax

TU.MAPI.ADDRESSBOOK(Mapihandle, Options, Error)

Description

Displays the MAPI address book. TU.MAPI.LOAD must be called before TU.MAPI.ADDRESSBOOK can be
called.

Parameters

Parameter Description

Mapihandle [P] The handle of the MAPI session returned from TU.MAPI.LOAD.
Options [P] Reserved for future use.
Error [R] A nonzero error code indicates a failure.

Chapter 5: MAPI Mail API

40

See also

TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL, TU.MAPI.GETMESSAGETU.MAPI.LOAD,
TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL, TU.MAPI.TERMINATE

TU.MAPI.DELETE
Syntax

TU.MAPI.DELETE(Mapihandle, Msgno, Options, Error)

Description

Deletes the specified message from your inbox. TU.MAPI.LOAD must be called before TU.MAPI.DELETE
can be called.

Parameters

Parameter Description

Mapihandle [P] The handle of the MAPI session returned from TU.MAPI.LOAD.
Msgno [P] The message number to be deleted. This corresponds to the list that

is returned by TU.MAPI.GETMAIL and refers to the attribute in the list that
contains the message to be deleted.

Options [P] Reserved for future use.
Error [R] A nonzero error code indicates a failure.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.FORWARD, TU.MAPI.GETMAIL, TU.MAPI.GETMESSAGE,
TU.MAPI.LOAD, TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL, TU.MAPI.TERMINATE

TU.MAPI.FORWARD
Syntax

TU.MAPI.FORWARD(Mapihandle, Address, CC, Subject, Msgtext, Attachment,
Msgno, Options, error)

Description

Forwards mail to specified address and so on. TU.MAPI.LOAD must be called before
TU.MAPI.FORWARD can be called.

Parameters

Parameter Description

Mapihandle [P] The handle of the MAPI session returned from TU.MAPI.LOAD.
Address [P] An SVM-delimited list of primary email addresses.
CC [P] An SVM-delimited list of cc email addresses.
Subject [P] The email subject heading.
Msgtext [P] The actual email.

TU.MAPI.GETMAIL

41

Parameter Description

Attachment [P] An SVM-delimited list of attachments with a full path name.
Msgno [P] The message number to be forwarded. This corresponds to the list that

is returned by TU.MAPI.GETMAIL and refers to the attribute in the list that
contains the message to be forwarded.

Options [P] Options are described in the Options table
Error [R] A nonzero error code indicates a failure.

Note: Any parameter that is specified here takes precedence over the original mail’s parameters.
The letters ‘FWD' are placed in the mail and the MSGTEXT specified in this function is concatenated
to the original message.

Options value

Value Description

R Receipt requested.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.GETMAIL, TU.MAPI.GETMESSAGE, TU.MAPI.LOAD,
TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL, TU.MAPI.TERMINATE

TU.MAPI.GETMAIL
Syntax

TU.MAPI.GETMAIL(Mapihandle, Msgtext, Options, Error)

Description

Gets mail or mail headers from the Inbox. TU.MAPI.LOAD must be called before TU.MAPI.GETMAP can
be called.

Parameters

Parameter Description

Mapihandle [P] The handle of the MAPI session returned from TU.MAPI.LOAD.
Msgtext [R] The email headers. To get all the mail messages as well as the headers,

you must specify T in the options. Options are described in the Msgtext table.
Options [P] Options are described in the Options table
Error [R] A nonzero error code indicates a failure.

Msgtext values

Value Description

1 Original display name.
2 Message subject.
3 Date on which the message was received by the mail server.
4 If T is specified in the options, this value is the actual text of the mail.

Chapter 5: MAPI Mail API

42

Value Description

5 Email address of the sender.

Options values

Value Description

T Returns the mail text as well as headers.
D Deletes the message after returning.
U Returns unread messages only.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMESSAGE,
TU.MAPI.LOAD, TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL, TU.MAPI.TERMINATE

TU.MAPI.GETMESSAGE
Syntax

TU.MAPI.GETMESSAGE(Mapihandle, Msgno, Msgtext, Options, Error)

Description

Retrieves the specified message (text) from your inbox. TU.MAPI.LOAD must be called before
TU.MAPI.GETMESSAGE can be called.

Parameters

Parameter Description

Mapihandle [P] The handle of the MAPI session returned from TU.MAPI.LOAD.
Msgno [P] The message number to be retrieved. This corresponds to the list that

is returned by TU.MAPI.GETMAIL and refers to the attribute in the list that
contains the message to be retrieved.

Msgtext [R] The text of the specified message.
Options [P] Options are described in the Options table
Error [R] A nonzero error code indicates a failure.

Options values

Value Description

D Deletes the message after retrieval.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL, TU.MAPI.LOAD,
TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL, TU.MAPI.TERMINATE

TU.MAPI.LOAD

43

TU.MAPI.LOAD
Syntax

TU.MAPI.LOAD(Profilename, Mapihandle, Options, Error)

Description

Instantiates a MAPI session. TU.MAPI.LOAD must be called before calling any MAPI functions.

Parameters

Parameter Description

Profilename [P] The name of predefined MAPI profile. If set to 0, the user is prompted for a
profile.

Mapihandle [R] The handle of the MAPI session that should be passed to any subsequent
call to a MAPI function.

Options [P] Reserved for future use.
Error [R] A nonzero error code indicates a failure.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL,
TU.MAPI.GETMESSAGE, TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL,
TU.MAPI.TERMINATE

TU.MAPI.REPLY
Syntax

TU.MAPI.REPLY(Mapihandle, Address, CC, Subject, Msgtext, Attachment,
Msgno, Options, Error)

Description

Replies to mail represented by MSGNO and sends to specified address and so on. Before this can be
called, TU.MAPI.LOAD needs to be called.

Parameters

Parameter Description

Mapihandle [R] The handle of the MAPI session that should be passed to any subsequent
call to a MAPI function.

Address [P] An SVM-delimited list of primary email addresses.
CC [P] An SVM-delimited list of cc email addresses.
Subject [P] The email subject heading.
Msgtext [P] The actual email.
Attachment [P] An SVM-delimited list of attachments with a full path name.

Chapter 5: MAPI Mail API

44

Parameter Description

Msgno [P] The message number to be replied to. This corresponds to the list that
is returned by TU.MAPI.GETMAIL and refers to the attribute in the list that
contains the message to be replied to.

Options [P] Options are described in the Options table.
Error [R] A nonzero error code indicates a failure.

Note: Any parameter that is specified here takes precedence over the original mail’s parameters.
The letters ‘RE' are placed in the mail and the MSGTEXT specified in this function is concatenated
to the original message.

Options values

Values Description

R Receipt requested.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL,
TU.MAPI.GETMESSAGE, TU.MAPI.LOAD, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL,
TU.MAPI.TERMINATE

TU.MAPI.REPLYTOALL
Syntax

TU.MAPI.REPLYTOALL(Mapihandle, Address, CC, Subject, Msgtext,
Attachment, Msgno, options, error)

Description

Replies to all addresses on the mail represented by MSGNO. TU.MAPI.LOAD must be called before
TU.MAPI.REPLYTOALL can be called.

Parameters

Parameter Description

Mapihandle [P] The handle to the MAPI session that was returned by TU.MAPI.LOAD.
Address [P] An SVM-delimited list of primary email addresses.
CC [P] An SVM-delimited list of cc email addresses.
Subject [P] The email subject heading.
Msgtext [P] The actual email.
Attachment [P] An SVM-delimited list of attachments with a full path name.
Msgno [P] The message number to be replied to. This corresponds to the list that

is returned by TU.MAPI.GETMAIL and refers to the attribute in the list that
contains the message to be replied to.

Options [P] Options are described in the Options table.
Error [R] A nonzero error code indicates a failure.

TU.MAPI.SENDMAIL

45

Note: Any parameter that is specified here takes precedence over the original mail’s parameters.
The letters ‘RE' are placed in the mail and the MSGTEXT specified in this function is concatenated
to the original message.

Options values

Values Description

R Receipt requested.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL,
TU.MAPI.GETMESSAGE, TU.MAPI.LOAD, TU.MAPI.REPLY, TU.MAPI.SENDMAIL, TU.MAPI.TERMINATE

TU.MAPI.SENDMAIL
Syntax

TU.MAPI.SENDMAIL(mapihandle, address, cc, subject, msgtext, attachment,
options, error)

Description

TU.MAPI.SENDMAIL Sends mail via MAPI. Before this can be called, TU.MAPI.LOAD needs to be called.

Parameters

Parameter Description

Mapihandle [P] The handle to the MAPI session that was returned by TU.MAPI.LOAD.
Address [P] An SVM-delimited list of primary email addresses.
CC [P] An SVM-delimited list of cc email addresses.
Subject [P] The email subject heading.
Msgtext [P] The actual email.
Attachment [P] An SVM-delimited list of attachments with a full path name.
Options [P] Options are described in the Options table.
Error [R] A nonzero error code indicates a failure.

Options values

Values Description

R Receipt requested.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL,
TU.MAPI.GETMESSAGE, TU.MAPI.LOAD, TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.TERMINATE

Chapter 5: MAPI Mail API

46

TU.MAPI.TERMINATE
Syntax

TU.MAPI.TERMINATE(mapihandle, options, error)

Description

Terminates a MAPI session; to be called after finishing MAPI usage.

Parameters

Parameter Description

Mapihandle [P] The handle to the MAPI session that was returned by TU.MAPI.LOAD.
Options [P] Reserved for future use.
Error [R] A nonzero error code indicates a failure.

Note: After sending mail with TU.MAPI.SEND.MAIL, TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, or
TU.MAPI.FORWARD, give the MAPI routines time to work before calling this subroutine or your mail
may not be sent successfully. Three to five seconds is usually sufficient.

See also

TU.MAPI.ADDRESSBOOK, TU.MAPI.DELETE, TU.MAPI.FORWARD, TU.MAPI.GETMAIL,
TU.MAPI.GETMESSAGE, TU.MAPI.LOAD, TU.MAPI.REPLY, TU.MAPI.REPLYTOALL, TU.MAPI.SENDMAIL

MAPI Errors
SB/XA uses version control checking to determine if an existing SBXAMAPIBridge component needs to
be upgraded. If so, it returns an error message. The TU.MAPI.LOAD routine also returns error messages
indicating why a MAPI load process failed.

Error Messages

MAP.LOGON.FAILURE (10000): Could not create the mapiclass - Ensure the mapi ocx
is installed.

Explanation: The TU.MAPI.LOAD routine failed to log on to the MAPI provider, and SB/XA could not
create the mapiclass. SBClient requires the MAPI ActiveX control file msmapi32.ocx on the client
computer, and this file might be missing or might not be installed correctly.

User response: For the XUI clients and SBClient, make sure that MAPI is set up correctly in the MAPI
provider on the client computer. For SBClient, make sure that the msmapi32.ocx file is installed
correctly on the client computer.

MAP.NO.MAPI (10013): MAPI is not set up on the client.

Explanation: The MAPI provider’s dynamic link libraries (DLLs) were not found on the client computer.

User response: Make sure that the MAPI provider’s DLLs are set up correctly in the MAPI provider on
the client computer.

Error Messages

47

MAP.NO.MAPI.BRIDGE (10014):The correct version of the SB/XA MAP bridge is not
registered - reinstall or upgrade it.

Explanation: The latest version of the SBXAMAPIBridge add-on program for SB/XA Browser Client and
SB/XA Rich Client is not installed or it is not listed in the Windows Registry on the client computer.

User response: Install the current version of the SBXAMAPIBridge program on the client computer. For
details, see the information about installing MAPI for messaging in the XUI clients in the SB/XA Getting
Started manual.

48

Chapter 6: ODBC API
These subroutines provide SQL connectivity to Microsoft ODBC32 drivers. For further information
regarding these drivers, consult Microsoft ODBC32 help or the Microsoft ODBC Programmer’s Reference
Guide. To set up the drivers, go to the Windows Control Panel and click the ODBC32 icon.

The ODBC API is supported in SBClient only.

The ODBC connectivity subroutines are:

▪ TU.SQL.CONNECT – Connects to a database.
▪ TU.SQL.DISCONNECT – Disconnects from a database.
▪ TU.SQL.EXEC – Executes an SQL statement on a database.
▪ TU.SQL.MAKEDICT – Creates host database dictionary records from the schema of an SQL table.
▪ TU.SQL.READ – Fetches the next record from a previous TU.SQL.EXEC call.

TU.SQL.CONNECT
Syntax

TU.SQL.CONNECT(connectparams, dbhandle, status)

Description

Connects to a foreign database. You must connect to the database before you query it. You
can connect to more than one database concurrently by calling the subroutine again with new
parameters; a new dbhandle is returned.

Parameters

Parameter Description

connectparams [P] Parameters to connect to the database in the following format:

token=value[;token=value...]

Valid tokens are:

▪ DRV – Name of datasource, defined in the ODBC32 configuration.
▪ UID – User ID or name.
▪ PWD – Password.

dbhandle [R] The handle returned for this database connection.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Example

CALL TU.SQL.CONNECT("DRV=QEDBF", DB.HANDLE, STATUS)

See also

TU.SQL.DISCONNECT, TU.SQL.EXEC, TU.SQL.MAKEDICT, TU.SQL.READ

TU.SQL.DISCONNECT

49

TU.SQL.DISCONNECT
Syntax

TU.SQL.DISCONNECT(dbhandle, status)

Description

Disconnects from a database.

Parameters

Parameter Description

dbhandle [P] The database handle returned from TU.SQL.CONNECT.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

See also

TU.SQL.CONNECT, TU.SQL.EXEC, TU.SQL.MAKEDICT, TU.SQL.READ

TU.SQL.EXEC
Syntax

TU.SQL.EXEC(dbhandle, sqlstat, sqlhandle, status)

Description

Executes any SQL statement supported by the target database.

Parameters

Parameter Description

dbhandle [P] The database handle returned from TU.SQL.CONNECT.
sqlstat [P] Valid SQL statement for the target database.
sqlhandle [R] The handle returned from the SQL statement, uniquely identifying this

specific statement.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Note: If the SQL statement is a SELECT statement, it does not return any data immediately.
Instead, it returns a handle. This handle is used by the SQLREAD statement to fetch data, one
record at a time.

Example

CALL TU.SQL.CONNECT('DRV=QEDBF', DB.HANDLE, STATUS)
IF STATUS # 0 PRINT 'ERROR';STOP
PRINT 'Enter SQL Table Name ':
INPUT TABLE.NAME

Chapter 6: ODBC API

50

SQLSTAT = 'SELECT * FROM ':TABLE.NAME
CALL TU.SQL.EXEC(DB.HANDLE, SQLSTAT, SQL.HNDLE, STATUS)

See also

TU.SQL.CONNECT, TU.SQL.DISCONNECT, TU.SQL.MAKEDICT, TU.SQL.READ

TU.SQL.MAKEDICT
Syntax

TU.SQL.MAKEDICT(dbhandle, dbtablename, dictfile, status)

Description

Executes any SQL statement supported by the target database.

Parameters

Parameter Description

dbhandle [P] The database handle returned from TU.SQL.CONNECT.
dbtablename [P] The name of the SQL table from which you want to generate dictionary

records.
dictfile [P] The name of the host dictionary file to contain the generated dictionary

records.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Example

The following example statement retrieves the name, length, and data type from each column in the
target database table and creates dictionary records for each of these fields.

CALL TU.SQL.CONNECT('DRV=QEDBF', DB.HANDLE, STATUS)
IF STATUS # 0 PRINT 'ERROR';STOP
CALL TU.SQL.MAKEDICT(DB.HANDLE, 'EMP.DBF', 'EMPLOYERS', STATUS)

See also

TU.SQL.CONNECT, TU.SQL.DISCONNECT, TU.SQL.EXEC, TU.SQL.READ

TU.SQL.READ
Syntax

TU.SQL.READ(sqlhandle, record, status)

Description

Fetches the next record from a previously executed SQL statement.

TU.SQL.READ

51

Parameters

Parameter Description

sqlhandle [P] The handle returned from a previous TU.SQL.EXEC call.
record [R] The variable to contain the contents of the read. The format of the data

returned is as follows: Each field of the record being read is converted
to a string. These strings are copied into a dynamically allocated array
(separated by attribute marks), which is returned in record. No data
conversion is performed. You decide how the data is processed.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

Example

CALL TU.SQL.CONNECT('DRV=QEDBF', DB.HANDLE, STATUS)
IF STATUS # 0 PRINT 'ERROR';STOP
SQLSTAT = 'SELECT NAME BAL FROM CUSTOMER.DBF'
CALL TU.SQL.EXEC(DB.HANDLE, SQLSTAT, SQL.HNDLE,STATUS)
LOOP WHILE STATUS = 0 DO
CALL TU.SQL.READ(SQL.HNDLE, RECORD, STATUS)
* do something with RECORD
.......
REPEAT

See also

TU.SQL.CONNECT, TU.SQL.DISCONNECT, TU.SQL.EXEC, TU.SQL.MAKEDICT

52

Chapter 7: PC File Handling API
These subroutines are used to manipulate PC files from the client.

The PC file handling API is supported in SB/XA Browser Client, SB/XA Rich Client, and SBClient.

The PC file handling subroutines are as follows:

▪ TU.CHECK.DIRECTORY – Checks whether a particular directory exists.
▪ TU.CHECK.FILE – Checks whether a particular file exists.
▪ TU.CREATE.DIRECTORY – Creates a directory.
▪ TU.CREATE.FILE – Creates a file.
▪ TU.DELETE.DIRECTORY – Deletes a directory.
▪ TU.DELETE.FILE – Deletes a file.

TU.CHECK.DIRECTORY
Syntax

TU.CHECK.DIRECTORY(directoryname, status)

Description

Returns a flag indicating whether the named directory exists.

Parameters

Parameter Description

directoryname [P] The full pathname of the directory to be checked.
status [R] Indicates whether the directory exists. Valid values are described in the

status table.

status values

Value Description

0 Directory exists.
1 Directory does not exist.

Example

The following example checks that the directory c:\tmp\tu exists, creates it if it does not exist, and
then deletes it.

DIRECTORYNAME = 'C:\TMP\TU'
CALL TU.CHECK.DIRECTORY(DIRECTORYNAME, STATUS)
IF STATUS = 0 THEN
CALL TU.DELETE.DIRECTORY(DIRECTORYNAME, STATUS)
END
CALL TU.CREATE.DIRECTORY(DIRECTORYNAME, STATUS)
IF STATUS THEN
PRINT 'CREATE FAILED - STATUS=':STATUS
END
CALL TU.DELETE.DIRECTORY(DIRECTORYNAME, STATUS)

TU.CHECK.FILE

53

IF STATUS THEN
PRINT 'DELETE FAILED - STATUS=':STATUS
END

See also

TU.CHECK.FILE, TU.CREATE.DIRECTORY, TU.CREATE.FILE, TU.DELETE.DIRECTORY, TU.DELETE.FILE

TU.CHECK.FILE
Syntax

TU.CHECK.FILE(filename, status)

Description

Returns a flag indicating whether the file exists.

Parameters

Parameter Description

filename [P] The full pathname of the file to be checked.
status [R] Indicates whether the file exists. Valid values are described in the status

table.

status values

Value Description

0 File exists.
1 File does not exist.

See also

TU.CHECK.DIRECTORY, TU.CREATE.DIRECTORY, TU.CREATE.FILE, TU.DELETE.DIRECTORY,
TU.DELETE.FILE

TU.CREATE.DIRECTORY
Syntax

TU.CREATE.DIRECTORY(directoryname, status)

Description

Creates the named directory and returns a flag indicating the success or failure of the operation.

Parameters

Parameter Description

directoryname [P] The name of the directory to be created.

Chapter 7: PC File Handling API

54

Parameter Description

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

This API returns success if you attempt to delete a nonexistent directory.

See also

TU.CHECK.DIRECTORY, TU.CHECK.FILE, TU.CREATE.FILE, TU.DELETE.DIRECTORY, TU.DELETE.FILE

TU.CREATE.FILE
Syntax

TU.CREATE.FILE(filename, status)

Description

Creates the named file and returns a flag indicating the success or failure of the operation.

Parameters

Parameter Description

filename [P] The full pathname of the file to be created.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

See also

TU.CHECK.DIRECTORY, TU.CHECK.FILE, TU.CREATE.DIRECTORY, TU.DELETE.DIRECTORY,
TU.DELETE.FILE

TU.DELETE.DIRECTORY
Syntax

TU.DELETE.DIRECTORY(directoryname, status)

Description

Deletes the named directory and returns a flag indicating the success or failure of the operation. This
subroutine fails if the directory contains files.

Parameters

Parameter Description

filename [P] The full pathname of the directory to be deleted.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.DELETE.FILE

55

See also

TU.CHECK.DIRECTORY, TU.CHECK.FILE, TU.CREATE.DIRECTORY, TU.CREATE.FILE, TU.DELETE.FILE

TU.DELETE.FILE
Syntax

TU.DELETE.FILE(filename, status)

Description

Deletes the named file and returns a flag indicating the success or failure of the operation.

Parameters

Parameter Description

filename [P] The name of the file to be deleted.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

This API returns success if you attempt to delete a nonexistent file.

See also

TU.CHECK.DIRECTORY, TU.CHECK.FILE, TU.CREATE.DIRECTORY, TU.CREATE.FILE,
TU.DELETE.DIRECTORY

56

Chapter 8: PC Printer Control API
These subroutines are used to query the status of Windows printers.

The PC printer control API is supported in SBClient only, with one exception as noted.

PC printer control subroutines are as follows:

▪ TU.GET.DEFAULT.PRINTER – Returns details for the default printer. Supported in SB/XA Browser
Client, SB/XA Rich Client, and SBClient.

▪ TU.GET.PRINTER.LIST – Lists the printers defined in the Windows environment. Supported in SB/XA
Browser Client, SB/XA Rich Client, and SBClient.

▪ TU.GET.PRINTER.ROWS – Returns the number of rows that can be printed on a printer.
▪ TU.QUERY.PRINT.OPTIONS – Used to get parameters normally defined in the Print Options dialog

box.
▪ TU.SELECT.PRINTER – Selects the printer to be used with the TU.SEND.TO.PRINTER subroutine.
▪ TU.SEND.TO.PRINTER – Outputs data to the selected printer. Supported in SB/XA Browser Client,

SB/XA Rich Client, and SBClient.
▪ TU.SEND.TO.RAW.PRINTER – Transfers data to the windows Print Manager for output, and uses

direct printing in the XUI clients, so the bytes are sent unchanged to the printer.
▪ TU.SET.PRINT.OPTIONS – Used to set parameters normally defined in the Print Options dialog box.

TU.GET.DEFAULT.PRINTER
Syntax

TU.GET.DEFAULT.PRINTER (default_printer, status)

Description

Returns a string containing details of the current default printer.

Parameters

Parameter Description

default_printer A string containing the details of current default printer. Values in the
returned statement are separated by right braces (}).

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

Example

For UniVerse, this subroutine can be called within a Basic routine in SBClient:

$INCLUDE DMSKELCODE COMMON
$INCLUDE DMSKELCODE SBPLUS.EQU
$INCLUDE TUBP USER.INCLUDE.H
$INCLUDE TUBP TU.API.H
*
STATUS = 0
DEF.PTR = ““
CALL TU.GET.DEFAULT.PRINTER(DEF.PTR, STATUS)

TU.GET.PRINTER.LIST

57

CONVERT “}” TO @VM IN DEF.PTR
CRT DEF.PTR<1,1>

See also

TU.GET.PRINTER.LIST, TU.SELECT.PRINTER

TU.GET.PRINTER.LIST
Syntax

TU.GET.PRINTER.LIST(printerlist, status)

Description

Returns a string containing details of the current default printer.

Parameters

Parameter Description

printerlist [P] A tilde (~) delimited list of printer definitions. Right braces (}) separate
fields in the definition. An example of printerlist is:

HP LaserJet Series I}winspol}LPT1:~\
\NP1ECEC4\HPLJ4-2}winspol}Ne02:

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

See also

TU.SELECT.PRINTER, TU.SEND.TO.PRINTER

TU.GET.PRINTER.ROWS
Syntax

TU.GET.PRINTER.ROWS(cols, rows, status)

Description

Returns the number of rows that can be printed on a page based on the number of columns, the
selected printer, and the specified font.

Parameters

Parameter Description

cols [P] The number of columns to be printed.
rows [P] The number of rows that can be printed on a page.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Chapter 8: PC Printer Control API

58

TU.QUERY.PRINT.OPTIONS
Syntax

TU.QUERY.PRINT.OPTIONS(option, status)

Description

TU.QUERY.PRINTER.OPTIONS is used to get parameters normally defined in the Print Options dialog
box, off of the File menu.

Parameters

Parameter Description

option [R] This will contain the following characters indicating the option(s) that are
currently set. Valid values are described in the option table.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

Option values

value Description

P Use Windows print drivers.
Q Use SBClient print font.
R Strip out box characters.
T Use Condensed mode.
U OEM-to-ANSI conversion.

For example, if Use Windows print drivers and Use Condensed mode are set, Option returns 'PT'.

See also

TU.GET.PRINTER.LIST, TU.GET.PRINTER.ROWS, TU.SELECT.PRINTER, TU.SEND.TO.PRINTER,
TU.SET.PRINT.OPTIONS

TU.SELECT.PRINTER
Syntax

TU.SELECT.PRINTER(printername, status)

Description

Selects a printer. Data can then be sent to this printer using TU.SEND.TO.PRINTER.

TU.SEND.TO.PRINTER

59

Parameters

Parameter Description

printername [P] The printer, defined in the TU.GET.PRINTER.LIST option printerlist, to be
used for future printing.

For example, if printerlist is HP LaserJet Series I}winspol}LPT1:~\
\NP1ECEC4\HPLJ4-2}winspol}Ne02:, printername is the first value from
printerlist, that is, HP LaserJet Series I or \\NP1ECEC4\HPLJ4-2.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

See also

TU.GET.PRINTER.LIST, TU.SELECT.PRINTER

TU.SEND.TO.PRINTER
Syntax

TU.SEND.TO.PRINTER(data, options, status)

Description

Outputs data to the currently selected printer. The output can be printed or displayed on screen with
the XPS Viewer in SB/XA Browser Client or SB/XA Rich Client. For information on viewing Query reports
on screen, see the SB/XA Application Server Reference Manual.

Parameters

Parameter Description

data [P] The data (string) to be printed.
options [P] Reserved for future use.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

See also

TU.GET.PRINTER.LIST, TU.SELECT.PRINTER

TU.SEND.TO.RAW.PRINTER
Syntax

TU.SEND.TO.RAW.PRINTER(data, printername, options, status)

Description

This subroutine transfers data to the windows Print Manager for output. It uses direct printing in the
XUI clients, so the bytes are sent unchanged to the printer. It allows you to bypass the XPS Printer and

Chapter 8: PC Printer Control API

60

drive your physical printer at a lower level. In SBClient, it is the same as TU.SEND.TO.PRINTER with the
addition of the options listed in this section. SBClient ignores the printername parameter.

Parameters

Parameter Description

data [P] This is the data to be output.
printername [P] This field contains a Windows printer name or "" for the default printer.

The printer can only be specified for XUI clients; this parameter is ignored by
SBClient.
[P] Options are as follows:
‘X’ Data is passed in hex.

options

‘C’ Concatenate lines.
status [R] This is an indication of the success or failure of the subroutine. A successful

call will return with a status of 0, and failure will return a non-zero value.

The error codes are in TUINSERT TU.ERRORCODES.H, and you can retrieve a text message using
TU.GET.ERROR.

Notes
▪ Not all windows printers support direct printing.
▪ Printing to a printer attached to the "FILE:" port may not work. If this is required, use a third party

tool that provides a port that automatically generates a file name for the file.

TU.SET.PRINT.OPTIONS
Syntax

TU.SET.PRINT.OPTIONS(Option, State, Status)

Description

TU.SET.PRINTER.OPTIONS is used to set parameters normally defined in the Print Options dialog box,
off of the File menu.

Parameters

Parameter Description

Option [P] A character representing a print option to set. For valid values, see the
Option table.

State [P] The value of the option. 1 is On; 0 is Off.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

Option values

value Description

P Use Windows print drivers.
Q Use SBClient print font.

TU.SET.PRINT.OPTIONS

61

value Description

R Strip out box characters.
T Use Condensed mode.
U OEM-to-ANSI conversion.

For example, if Use Windows print drivers and Use Condensed mode are set, Option returns 'PT'.

See also

TU.GET.PRINTER.LIST, TU.GET.PRINTER.ROWS, TU.QUERY.PRINT.OPTIONS, TU.SELECT.PRINTER,
TU.SEND.TO.PRINTER

62

Chapter 9: Windows Process Control API
These subroutines control starting and closing of Windows applications.

The Windows process control API is supported in SB/XA Browser Client, SB/XA Rich Client, and
SBClient.

Windows process control subroutines are:

▪ TU.CHECK.APP – Indicates whether a Windows application is currently running.
▪ TU.CLOSE.APP – Closes a Windows application.
▪ TU.LAUNCH.APP – Starts a DOS or Windows application.

Due to the architecture of the Windows operating system, it is not possible to find 16-bit applications
in a 32-bit environment.

TU.CHECK.APP
Syntax

TU.CHECK.APP(applicationname, appstatus)

Description

Determines whether an application is currently running.

SBClient supports only 32-bit applications.

Parameters

Parameter Description

applicationname [P] The name of the application, such as winword.exe.
appstatus [R] Indicates whether the application is running. Returns 0 if an application is

running; 12 if not

See also

TU.CLOSE.APP, TU.LAUNCH.APP

TU.CLOSE.APP
Syntax

TU.CLOSE.APP(applicationname, status)

Description

Closes the named application.

SBClient supports only 32-bit applications.

TU.LAUNCH.APP

63

Parameters

Parameter Description

applicationname [P] The name of the application to be closed.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

See also

TU.CHECK.APP, TU.LAUNCH.APP

TU.LAUNCH.APP
Syntax

TU.LAUNCH.APP(applicationname, option, status)

Description

This subroutine launches 32-bit Windows applications. The client first checks the Registry to see if it
can find the path to the executable. If the client cannot find the path in the Registry, the client then
checks the environment PATH variable and attempts to use this. If the client still cannot launch the
application, it prompts the user for this information via a dialog box. You can use the Browse button
to navigate to the application on the appropriate hard drive. The client then store this information in
the Registry so you do not have to enter it again.

In the case of DOS commands and 16-bit applications (which all use the same DOS virtual machine),
use TU.EXECUTE.SHELL instead.

Parameters

Parameter Description

applicationname [P] The name of the application; for example, winword.exe.
option [P] The state in which the application is to be launched, maximized,

minimized, or open covering a portion of the screen.

Use these predefined constants in TU.API.H:

EQU APP.HIDE TO 0
EQU APP.SHOWNORMAL TO 1
EQU APP.SHOWMINIMIZED TO 2
EQU APP.SHOWMAXIMIZED TO 3
EQU APP.SHOWNOACTIVATE TO 4
EQU APP.SHOW TO 5
EQU APP.MINIMIZE TO 6
EQU APP.SHOWINNOACTIVE TO 7
EQU APP.SHOWNA TO 8
EQU APP.RESTORE TO 9

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

Chapter 9: Windows Process Control API

64

Example

The following example starts a Windows application. It first checks the client’s version details, and
then starts Microsoft Word. After it has started Microsoft Word, it checks Word to see whether it is
running. If it is running, it closes the program and then checks to see if it is closed.

CALL TU.GET.VERSION(VERSION, STATUS)
PRINT VERSION
APPLICATION = 'WINWORD.EXE'
OPTIONS = APP.SHOWMINNOACTIVE
CALL TU.LAUNCH.APP(APPLICATION, OPTIONS, STATUS)
SLEEP 2
CALL TU.CHECK.APP(APPLICATION, STATUS)
PRINT 'CHECK STATUS=':STATUS
IF NOT(STATUS) THEN
CALL TU.CLOSE.APP(APPLICATION, STATUS)
PRINT 'CLOSE STATUS=':STATUS
CALL TU.CHECK.APP(APPLICATION, STATUS)
PRINT 'CHECK STATUS=':STATUS
END

See also

TU.CHECK.APP, TU.CLOSE.APP, TU.GET.VERSION, TU.EXECUTE.SHELL

65

Chapter 10: Miscellaneous Windows Integration
API

These subroutines provide additional Windows integration functionality.

The Windows integration API is supported in SBClient only, with exceptions as noted.

Miscellaneous Windows integration subroutines are as follows:

▪ TCL.SBCVERSION – This is a TCL command that displays the SBClient version and the host platform
and version.

▪ TU.CLIENT.GETENV – Returns the contents of the specified environment variable. Supported in SB/
XA Browser Client, SB/XA Rich Client, and SBClient.

▪ TU.CLIENT.SETENV – Sets the contents of the specified environment variable. Supported in SB/XA
Browser Client, SB/XA Rich Client, and SBClient.

▪ TU.EXECUTE.SHELL – Runs a shell command on the client’s operating system. Supported in SB/XA
Browser Client, SB/XA Rich Client, and SBClient.

▪ TU.GET.VERSION – Gets the SBClient version and the client host library version.
▪ TU.IMAGE – Displays a bitmap image.
▪ TU.MACRO – Invokes SBClient's macro facility to control Windows applications and SBClient

scripts.
▪ TU.RUN.MULTIMEDIA – Runs a Multimedia Command Interface (MCI) string.
▪ TU.RUN.SBO.COMMAND – Runs an SBDesktop command.
▪ TU.SESSION.CLOSE – Closes a session without displaying a confirmation dialog box.
▪ TU.VIDEO – Plays a video using the SBClient video player.

TCL.SBCVERSION
Syntax

TCL.SBCVERSION

Description

TCL.SBCVERSION is a TCL command that displays version information for SBClient, including the
client version and the host platform and version.

TU.CLIENT.GETENV
Syntax

TU.CLIENT.GETENV(variable, returnstring)

Description

TU.CLIENT.GETENV is used to return the contents of the specified environment variable. It is
supported in SB/XA Browser Client, SB/XA Rich Client, and SBClient.

Chapter 10: Miscellaneous Windows Integration API

66

Parameters

Parameter Description

variable [P] The environment variable to query (for example, “TEMP”).
returnstring [R] String containing the value of the environment variable. If the call fails,

the subroutine returns an empty string.

TU.CLIENT.SETENV
Syntax

TU.CLIENT.SETENV(Env, Set.str)

Description

This subroutine is used to set the contents of the specified environment variable. It is supported in SB/
XA Browser Client, SB/XA Rich Client, and SBClient.

Parameters

Parameter Description

Env [P] The variable’s name.
Set.str [P] The string to which the variable is set.

Note: Some of these variables (such as SBOPATH, SBTUPATH, SBODB, SBOCLIENT, and
SBOPRINTPATH) are system-specific to SBClient and cannot be set by developers. Some user-
defined variables used by SBClient are not activated until the client has been restarted. All
environment variables are set and then written to the sbopen.ini file.

TU.EXECUTE.SHELL
Syntax

TU.EXECUTE.SHELL(Shell.Command, Option)

Description

This subroutine is used to run a shell command on the client’s operating system or on a 16-bit
application. It is supported in SB/XA Browser Client, SB/XA Rich Client, and SBClient.

When specifying the shell command, it either must be located in your PATH variable or you must
specify the full path to the command.

Therefore to execute Notepad, you would specify a path similar to:

C:\Windows\Notepad.exe

Use TU.LAUNCH.APP to start applications such as Microsoft Word.

All shell commands are executed in the DOS virtual machine. It is therefore not possible to use
routines like TU.CHECK.APP or TU.CLOSE.APP on commands/applications that run in the virtual
machine. If this functionality is required, you must use TU.LAUNCH.APP. This subroutine creates

TU.EXECUTE.SHELL

67

processes for each application, which means you can check to see if it is running or kill it from Basic.
Applications must be 32 bit because 16-bit applications run in the DOS virtual machine.

Parameters

Parameter Description

Shell.Command [P] A string containing the command and arguments to be executed.

The format for the command string is:

[+ | & | -] [n] command

where:

+ indicates that a Windows 16-bit application command is to be run
asynchronously (the command is started, and SBClient waits for it to finish).

& indicates that a Windows 16-bit application command is to be run
synchronously (the command is started, but control is returned to SBClient,
without waiting for the command to complete).

- indicates that a DOS command is to be run (synchronously). This is the
default.

n applies only when running a Windows 16-bit application command. The
value may be any of the values described in the Shell.Command table.

Option [P] A string containing additional arguments to be used during execution of
the shell command

[P] option – do not parse the shell command. This option will disable the
parsing and will not convert ‘/’ to ‘\’.

Shell.Command values

Value Description

0 Runs the program, but hides it.
1 Runs the program in normal show state, and restores from maximized or

minimized.
2 Runs minimized.
3 Runs maximized. This is the default value.
4 Runs in current state, but does not activate.
5 Runs in current state.
6 Runs minimized, and activates top window in system list.

Example

The following runs the DOS DIR command.

TU.EXECUTE.SHELL(“-DIR /P”,”P”);

The following runs the DOS COPY command invisibly.

TU.EXECUTE.SHELL(“-OCOPY test.bmp tmp.bmp”,””);

Chapter 10: Miscellaneous Windows Integration API

68

See also

TU.LAUNCH.APP

TU.GET.VERSION
Syntax

TU.GET.VERSION(version, error)

Description

Returns the SBClient version and the client host library version in a dynamic array.

Parameters

Parameter Description

version [R] The first attribute is the SBClient version. The second attribute is the host
library version.

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

Example

The following example returns the SBClient version information.

CALL TU.GET.VERSION(VERSION, STATUS)
PRINT VERSION

TU.IMAGE
Syntax

TU.IMAGE(bitmapfile, col, row, scale)

Description

Displays an image.

Parameters

Parameter Description

bitmapfile [P] The name of the file in which the bitmap is stored.
col [P] The horizontal position of the left side of the bitmap.
row [P] The vertical position of the top of the bitmap.
scale [P] The size at which the bitmap is displayed. A value of 100 displays the

bitmap at its original size. A value of 0 makes the bitmap disappear.

Note: The underlying escape sequence sent to SBClient is described in Escape sequences, on page
114.

TU.MACRO

69

TU.MACRO
Syntax

TU.MACRO(type, macro, value)

Description

Invokes SBClient’s macro facility to control Windows applications and SBClient scripts.

Parameters

Parameter Description

type [P] Can be one of the following:

▪ APP.CHECK
▪ APP.CLOSE
▪ APP.FIND
▪ APP.ICON
▪ APP.LAUNCH
▪ APP.LOCATION
▪ APP.MACRO
▪ APP.SHOWWIND
▪ APP.ZOOM
▪ APP.SHELL

macro [P] The macro itself.
value [R] Any returned value (if applicable).

Note: Developers need to include the TUBP record TU.API.H to access the above types.

See also

For more information about macros, see the information about macro syntax in Using SBClient.

TU.RUN.MULTIMEDIA
Syntax

TU.RUN.MULTIMEDIA(mci.string, returnstring, error)

Description

TU.RUN.MULTIMEDIA is used to run a Multimedia Command Interface (MCI) string. For further details,
consult the MCI Command String Reference.

Parameters

Parameter Description

mci.string [P] An MCI string, but with the option extension described in the mci.string
table following a + token

returnstring [R] String containing error or status text.

Chapter 10: Miscellaneous Windows Integration API

70

Parameter Description

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

mci.string values

Parameter Description

+C# Convert # from columns to x pixels.
+D# Convert # from character depth to pixel.
+HW Substitute hCeo window handle.
+HD Substitute hCeo device context handle.
+I {# # # #} Invalidate rectangle.
+R# Convert # from rows to y pixels.
+W# Convert # from character width to pixel.

See also

MCI online help.

TU.RUN.SBO.COMMAND
Syntax

TU.RUN.SBO.COMMAND(commandline, capture)

Description

Runs an SBDesktop command.

Parameters

Parameter Description

commandline [P] The SBDesktop command to run. The commandline may consist of a
command followed by parameters, as though it had been typed from the
SBDesktop command line. The command to be run must be cataloged in the
VOC of the SBClient account.

capture in [R] Returns the captured output, but only if an input capture is set to true.
If mode 1 or 2 is used, the returned value represents the captured data.

In [P] (passed or in), the values described in the capture table.

capture values

Parameter Description

0 Do not capture the output.
1 Capture and return the output.
2 Capture and return the output, converts all AM, VM, and SVM to tab and ^\.
3 Capture output and return nothing.

TU.SESSION.CLOSE

71

TU.SESSION.CLOSE
Syntax

TU.SESSION.CLOSE(sessionname)

Description

Closes the SBClient session without displaying a confirmation dialog box.

Parameters

Parameter Description

sessionname [P] The name of the session to close. If null, the current active session is
closed.

TU.VIDEO
Syntax

TU.VIDEO(videofile)

Description

Plays a video using the SBClient video player.

Parameters

Parameter Description

videofile [P] The name of the Windows .AVI file to play. If you do not specify a file, you
can select a file from the video player Load button.

Note: You must have the Microsoft 'Video For Windows' driver loaded to be able to play .AVI files.

72

Part III: Advanced windows integration
The following topics explain advanced concepts of Windows integration.

73

Chapter 11: Generic object manipulation API
These subroutines provide advanced Windows integration functionality for Data/C++ COM or ActiveX
objects.

The generic object manipulation API is supported in SBClient only.

Generic object manipulation subroutines are as follows:

▪ ROC.CREATE – Creates any Data/C++ COM or ActiveX object and sets initial attributes for that
instance.

▪ ROC.DESTROY – Destroys a Data/C++ COM or ActiveX object created with ROC.CREATE, as well as
any children of this object.

▪ ROC.GET – Retrieves the current values of any attributes in a Data/C++ COM or ActiveX object.
▪ ROC.GETHANDLE – Returns the numeric handle of a specified object name.
▪ ROC.SET – Sets the values of any attributes in any Data/C++ COM or ActiveX object created

previously.

ROC.CREATE
Syntax

ROC.CREATE(classname, attributes, values, handle, error)

Description

This subroutine is used to create any Data/C++ COM or ActiveX object and set any initial attributes
for that instance. Upon successful creation, the handle for the newly created object is returned in the
handle parameter.

Parameters

Parameter Description

classname [P] The class type of the object you want to create; for example, formclass,
textclass, pbclass, or fredsclass.

attributes [P] Any attributes to be set at create time; for example, dimensions,
foreground, or string.

values [P] The associated values for the attribute list specified above; for example, !
00:VM:100, YELLOW, or “Hello World”.

handle [R] This parameter is updated upon successful creation with the new object’s
handle. This handle is used to reference subsequent object actions.

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

See also

ROC.DESTROY

Chapter 11: Generic object manipulation API

74

ROC.DESTROY
Syntax

ROC.DESTROY(objectname, error)

Description

This subroutine is used to destroy a Data/C++ COM or ActiveX object created previously with
ROC.CREATE. Any children of this object are also destroyed.

Parameters

Parameter Description

objectname [P] The object name or object handle of the object you want to destroy.
error [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

See also

ROC.CREATE

ROC.GET
Syntax

ROC.GET(objectname, attributes, values, error)

Description

This subroutine retrieves the current values of any attributes in a Data/C++ COM or ActiveX object
created previously with ROC.CREATE.

Parameters

Parameter Description

objectname [P] The object name or object handle of the object you want to interrogate.
attributes [P] The attributes to be examined; for example, dimensions, foreground, or

string. If multiple attributes are to be examined, you must use the ROC.US
(ROC.US is defined in ROC.H) delimiter, which is usually CHAR(250). In
a multiparameter attribute examination (for example, <Attrib, param1,
param1>), multivalued characters must be used to separate the attribute
name and its parameters.

When using third-party OCXs, an ANSI-to-OEM conversion may be required.
Please consult the documentation for your OCX. If this conversion is
required, you need to specify the attributes arguments as follows:

<attrib;X,param1,param2>
values [R] The associated list of values returned after the call; for example, !

00:VM:100, YELLOW, or “Hello World”. Multiple get values use the ROC.US
delimiter as described above.

ROC.GETHANDLE

75

Parameter Description

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

See also

ROC.CREATE, ROC.DESTROY, ROC.SET

ROC.GETHANDLE
Syntax

ROC.GETHANDLE(objectname, handle, error)

Description

This subroutine returns the numeric handle of a specified object name.

Parameters

Parameter Description

objectname [P] The object name of the object for which you want to get the handle.
handle [R] This parameter is updated with the object’s handle.
error [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

See also

ROC.CREATE

ROC.SET
Syntax

ROC.SET(objectname, attributes, values, error)

Description

This subroutine is used to set values of any attributes in any Data/C++ COM or ActiveX object created
previously. Attributes can also be set at create time.

Parameters

Parameter Description

objectname [P] The object name or object handle of the object you want to examine.

Chapter 11: Generic object manipulation API

76

Parameter Description

attributes [P] The attributes to be set; for example, dimensions, foreground, or string.
If multiple attributes are to be set, you must use the ROC.US (ROC.US is
defined in ROC.H) delimiter, which is usually CHAR(250). In a multiparameter
attribute set (for example, <Attrib, param1, param1>), you must use
multivalued characters to separate the attribute name and its parameters.

When using third-party OCXs, an OEM-to-ANSI conversion may be required.
Please consult your OCX documentation. If this conversion is required, you
need to specify the attributes arguments as follows:

<attrib,X,param1,param2>
values [P] The associated values for the attribute list specified above; for example,

100:VM:100, YELLOW, “Hello World”. To separate multiple set values, use the
ROC.US delimiter as described above.

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

See also

ROC.CREATE, ROC.DESTROY, ROC.GET

77

Chapter 12: OLE Server interface
The OLE server interface is supported in SBClient only.

It is possible to control SB+ Server through SBClient while making the user interface of SBClient
invisible. Using the “Self-contained forms” functionality of SB+ Server, you can activate SB+ Server
commands and see the resulting SB+ Server processes without either the SB+ Server main background
window (known as MainWin) or the SBClient user interface being visible. This provides developers with
a great deal of flexibility in customizing applications. A comprehensive overview of how to use the OLE
Server Interface is located in the samples folder in the SB/XA product download directory.

The code examples shown are, unless otherwise stated, Microsoft Visual Basic 5 routines that
represent a client application interacting with the SB OLE Server. The client application supplied is
based on a Windows Explorer user interface that demonstrates how to access the various SB+ Server
commands (via an “invisible” client). The application uses a TreeView control. The Microsoft Visual
Basic (VB) example is included in the samples folder in the SB/XA product download directory.

The following diagram illustrates an example of the overall process of SB OLE Server communication.

Components
In order to use the SB OLE Server functionality, interaction takes place through four components.

These are:

▪ Client application
▪ SBClient

Chapter 12: OLE Server interface

78

▪ SB+ Server
▪ Custom application (created using SB+ Server)

Host Interface
The following routines have been added to the standard client host library and are available to enable
the host code (such as a custom application created using SB+ Server) to communicate with the client
code if required:

▪ TU.SEND.EVENT is to be used for generic user-defined events.
▪ TU.SET.SERVER.STATE is to be used to inform the client code (and SBClient) of the current state of

the host.

SB+ Server Interface
SB+ Server provides an interface for internal processes, as well as a server that can dispatch events
to user-defined host code. This enables client code to run any SB+ Server process on the host, which
can then return values to the client code. SB+ Server handles most of the server communications;
however, it is still possible for any user-defined host code to send events to the client code.

Note: SB+ Server runs in GUI mode only.

To start the session, the client code runs StartServer, passing the name of a valid session configuration
document (and its path) as well as UNIX/Windows and SB+ user logon details (see ActiveX interface
above). A script that uses the logon information to log the user on to UNIX and SB+ should be attached
to the session.

A terminal type of TU.xxx.SERVER (for example, TU.VT220.SERVER) tells SB+ that it must run in SERVER
mode. Internally, the SB.LOGIN program replaces this terminal type with TU.xxx.GUI and invokes the
SB.GUI.SERVER program.

SB.GUI.SERVER establishes the correct environment (Common block, Sysid), calls
TU.SET.SERVER.STATE with a READY status, and then waits for a client-generated event.

SB+ Server can receive five possible events:

▪ Execute Process (interactive)
SB+ Server can be told to run an interactive process, such as an input/output process, menu
process, or Help dialog box. After the form is displayed, SB+ Server calls TU.SET.SERVER.STATE
to notify the client code that the server is ready for more interactive commands. At this point,
the program control is in SB.GUI.INP (standard input routine), SB.MENU.GUI (menu selection), or
SB.DISP.BOXTEXT (Help dialog box) — which means the control is in any SB+ program capable of
receiving and processing events.

▪ Execute Process (noninteractive)
This type of event causes the process to be executed until completion before setting the Server
state to READY. Some examples of processes invoked in this manner are CEOs, Access Reports, and
Select processes.

▪ Get Menu Level (noninteractive)
The client code uses this type of call to get the menu tree information. The server returns the menu
options and process types to the client code (input, output, selection, or shell process).

▪ Exit Server (noninteractive)
This event causes the SB+ Server to shut down.

▪ Modify Process (interactive)
This is equivalent to typing /mp to modify a process.

SBClient-specific

79

The client code needs to specify one of the five types when calling a menu/process. The mode is
passed as part of the event_string in the SendEvent method. The following are syntax examples of
the event_string parameter in the SendEvent() method when using Microsoft Visual Basic:

Syntax Description

sbcom_process Run a process in interactive mode:

event_string = session_handle & ";sbcom_process;"&
processname[,parameter][;processdata]

sbcom_modal Run a process in noninteractive mode:

event_string = session_handle & ";
sbcom_modal;"&processname[,parameter]
[;processdata]

sbcom_menu Get a menu level in noninteractive mode:

event_string = session_handle & ";sbcom_menu;"&
menuname

sbcom_exit Shut down SB+ Server:

event_string = session_handle & ";sbcom_exit"

tree_modify Call modify process:

event_string = session_handle & ";tree_modify;" &
processname

The noninteractive processes and 'get menu level' type processes will be capable of passing the
data back to the client.

To run user-defined host code, the client code specifies a process name (and optional parameter) and
how it is to be executed (interactively or noninteractively). The process could be any of 21 process
types, such as screens, reports, or a call to a Basic subroutine.

SBClient-specific

SBClient Events

EventServer()

EventServer(event_type, event_src, event_data)

Parameters

Parameter Description

event_type This may be SERVER_STATE, SERVER_EVENT, PROGRESS, or SCRIPT_DATA.
See the event_type table for values.

event_src All events return the session handle in the parameter that identifies the
session from which this event was generated.

event_data This contains protocol-dependent event information.

Chapter 12: OLE Server interface

80

event_type values

Value Description

The SBClient object generates this type of event when the server identified by a
session handle changes state. The new server state value is delivered with the
event in the event_data parameter. Values are:
Value Description
1 - READY A READY state is returned when the host server program becomes

ready to receive events. The host program can generate this event
using the TU.SET.SERVER.STATE API with the state parameter set
to 1. (For further information, see Host Interface, on page 78).

2 - BUSY A BUSY state is returned when the host server program becomes
busy and cannot receive events. The host program can generate
this event using the TU.SET.SERVER.STATE API with the state
parameter set to 2. (For further information, see Host Interface,
on page 78).

3 - SHUTDOWN A SHUTDOWN state is returned when a session handle becomes
invalid (for example, after the CloseSession() call). The host
program can generate this event using the TU.SET.SERVER.STATE
API with the state parameter set to 3. (For further information, see
Host Interface, on page 78).

SERVER_STATE

4, 5, 6, 7 As an approximate guide, 4=25%, 5=50%, 6=75%, and 7=100%, of
logging on or logging off progress.

SERVER_EVENT The host program can generate this type of event using the TU.SEND.EVENT API,
specifying an event string appropriate for the implemented protocol.

PROGRESS This event type returns a percentage value that represents the percentage
completion of an executing file transfer from the host to a client PC or vice versa.

SCRIPT_DATA This is used if the script contains a trigger response of [com(data)], where data
is user-specified. It can be used, for example, to respond to an invalid password
string. The VB code can then display a dialog box prompting the user to reenter the
password, and then send the password with the following:

' Status = sbc.SendEvent(session_handle, "STRING",
newpassword, val)

This [com_data(data)] macro enables the VB program to pick up every trigger
specified in the script and respond to it with sendEvent. This illustrates that the
entire script can be driven from the client program.

SBClient Methods

SBCom.dll exposes the following methods to a calling application (an application that references
the object containing the method).

StartServer()

This method must be called to initialize all the communication channels and start the server before
calling any other methods.

StartServer()

81

Syntax

status = objectname.StartServer(session_id, parameters, timeout,
session_handle)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
Status = sbc.StartServer(File1.Path & "\" & File1.filename, "un~" & uname _
& ";pw~" & pw, 10, SessionHandle)

Parameters

Parameter Description

status [Output] When StartServer() is called, the client application code should
wait for the EventServer event with an event type of SERVER_STATE to
determine when the server is ready. It should not rely on the status returned
by StartServer() to determine whether the server is ready (see Return value
description below).

If status does not equal zero (0), the number represents the error code.

Note: The client can display the progress of the logon as it receives various
server messages that track the logon process. (For details, see SBClient
Events, on page 79.

A zero (0) is returned if executes StartServer(). StartServer() returns
immediately and does not wait for the server to be ready. A zero does not
indicate that the server has started; rather, it indicates that the command to
start the server has been sent to the host successfully.

session_id [Input] This is the file name of a .sbc file that includes a script to log on to SB
+.

parameters [Input] This contains script replacement values for user IDs and passwords
(such as UNIX user_id and password or SB+ Server user_id and password).
The parameters are semicolon-delimited.

Each pair of parameters is tilde (~) delimited. For example:

“un~” usernamevariable;”pw~” & passwordvariable.

In this case "un~" & usernamevariable;"pw~"& passwordvariable are the
replacement variables. Two replacement variables are passed. When un
is encountered in a response to a trigger in a script, usernamevariable is
substituted. Similarly passwordvariable is substituted for pw. You can pass
any number of replacement variables separated by semicolons. This means
that if the script has [user_data("un")] as a response to a trigger, the script
substitutes the value that was passed as usernamevariable.

If the variables are set up via the Setup > Script command, they are user-
defined script replacements.

Example:

usernamevariable=mark

passwordvariable=mypassword

The auto script learn inserts the [user_data("un")]' whenever the user types
the word "mark."

Chapter 12: OLE Server interface

82

Parameter Description

timeout [Input] This specifies a default timeout value for this call and calls to all other
methods. Where a timeout value is specified in a call to a different method,
that timeout takes precedence for the call to that method.

The timeout in this method refers only to the time it takes for the client code
method call to return from SBClient. The method returns as soon as SBClient
has sent the request/data to the host; it does not wait until the host receives
(or processes) the request/data.

session_handle [Input] If the server is started successfully (status = 0), a valid session handle
is returned. This is to be used in all subsequent calls to the interface.

Note: A valid session handle is denoted by a positive number. The positive
number represents the “internal identity” of an SB OLE Server object that
has been created. If the session handle is returned as a zero (0), an error has
taken place.

ShutdownServer()

This method is to be called before the client application shuts down.

Note: Before calling this method, the client code should have sent the shut down sequence
"sbcom_exit" to the host program with sbc.SendEvent(). If not, the host program is left running.

Syntax

sbc.ShutdownServer(session_handle, timeout)

Public SessionHandle As Variant
Public WithEvents sbc As SBCOMLib.SBClient
.
.
sbc.ShutdownServer (SessionHandle):

Parameters

Parameter Description

session_handle [Input] This is the valid session handle received from a call to StartServer().
timeout [Input] Optional. If specified, this timeout will take precedence over the

timeout specified in StartServer().

The timeout in this method refers only to the time it takes for the client code
method call to return from SBClient. The method returns as soon as SBClient
has sent the request/data to the host; it does not wait until the host receives
(or processes) the request/data.

SendEvent()

This is the method that the client application uses to communicate with the host (or server machine).

SendEvent()

83

Syntax

status = objectname.SendEvent(session_handle, event_type, event_string,
retStr, timeout)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
Status = sbc.SendEvent(SessionHandle, "DEBUG", "1;" & Picture1.hwnd, val)

This method can be called only if the server is in the READY state. The client program can determine
the server state by calling the CheckServerState() method or by waiting for a SERVER_STATE event to
be generated (see SBClient Events, on page 79).

Parameters

Parameter Description

status [IOutput] If the event was successfully sent to the server program, the
value is zero. Note that no acknowledgment from the server is required. If
a number between 2 and 7 is returned, this indicates that the server is not
ready to handle events and the event was not sent to the host. The numbers
indicate the actual state of the server. See the list of valid server states in
CheckServerState(), on page 85.

session_handle [Input] Valid session handle received from a call to StartServer().
[Input] The type of event to generate to host. The following table identifies
the values for each event_type. Valid event types are:
SB+ This type is used when communicating with an SB+ server.

The data is packaged in a manner that SB+ understands.
STRING This is used when sending any string directly to the host

without any packaging.
SB
+SYNCHRONOUS

This is used when sending data to the host, which requires
a return value from the host before the client code can
continue.

Note: Give careful consideration before using SB
+SYNCHRONOUS because client code will not continue
running until the server has completed its actions. In effect,
this “freezes” the client code unless the client code has
other threads running. Instead, we recommend using SB
+ and waiting for a SERVER READY event from the host to
achieve similar functionality.

event_type

DEBUG If this is set, the SBClient terminal displays the session
while logging on.

Chapter 12: OLE Server interface

84

Parameter Description

event_string [Input] User-defined parameter to be passed to the server program running
on the host. The required value of the parameter depends on the event_type
parameter shown in the table above. See the following table for possible
values for event_type/event_string combinations.

When using SB+ or SB+ SYNCHRONOUS as the event type, the event_string
must be made up of the following three parameters concatenated together
and delimited with semicolons:

▪ Object_Details – The session handle (which is the same as the value
passed in the session handle parameter shown above).

▪ Event – One of the following events: sbcom_process, sbcom_modal,
sbcom_menu, sbcom_exit, or tree_modify. For a description of these
events, see SB+ Server Interface, on page 78.

▪ Any additional data required for the event.
session_handle & “;sbcom_process;” & processname

When using STRING as the event_type, the event_string can be any literal
string that you want to send to the host.

When using DEBUG as the event_type, the event_string can be 1 or 0 to turn
debug ON or OFF. If you also pass a valid Windows handle, the session is
displayed in your window; for example, “1;” & picture1.hwnd.

retStr [Output] The value returned by the function when used in synchronous
mode; for example, event_type = SB+SYNCHRONOUS.

timeout [Input] This determines the time to allocate for a timeout.

Optional. If specified, this timeout takes precedence over the timeout
specified in StartServer().

If using SB+, STRING, or DEBUG, the timeout in this method refers only to the
time it takes for the client code method call to return from the client. The
method returns as soon as the client has sent the request/data to the host; it
does not wait until the host receives (or processes) the request/data.

Otherwise, if using SB+ SYNCHRONOUS, this represents the entire time for
the host to respond.

The following table shows the values for each event_type/event_string combination.

CheckServerState()

85

Possible values for event_type/event_string combinations

event_type
SB+ STRING SB+

SYNCHRONOUS
DEBUG

session_handle &
“;sbcom_process;” &
processname

“Any string” session_handle &
“;sbcom_process;”
& processname

“1” & window
handle

session_handle &
“;sbcom_modal;” &
processname

session_handle &
“;sbcom_modal;” &
processname

True 1

session_handle &
“;sbcom_menu;” &
menuname

session_handle &
“;sbcom_menu;” &
menuname

False 0

event_string

session_handle &
“;sbcom_exit;”

session_handle &
“;sbcom_exit;”

CheckServerState()

Syntax

state = objectname.CheckServerState(session_handle, timeout)

Parameters

Parameter Description

state [Output] Returns the current state value for the session handle. State can
take one of the following values:

▪ 1: READY
▪ 2: BUSY
▪ 3: SHUTDOWN
▪ 4,5,6,7: Sequential progress indicators during the logon and connection

to the host. For example, 4 indicates 25% complete.

Note: Any call to SendEvent() fails immediately if the server is not in the
READY state.

session_handle [Input] Valid session handle received from a call to StartServer().
timeout [Input] Optional. If specified this timeout will take precedence over the

timeout specified in StartServer().

The timeout in this method refers only to the time it takes for the client
code method call to return from SBClient. The method returns as soon as
SBClient has sent the request/data to the host; it does not wait until the
host receives (or processes) the request/data.

SetOptions()

This method is used to set the various SBClient options.

Chapter 12: OLE Server interface

86

Syntax

status = objectname.SetOptions(session_handle, options, timeout)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
sbc.SetOptions(SessionHandle, "server_state~1")

Parameters

Parameter Description

status [Output] Returns zero (0) if the options were set successfully.
session_handle [Input] This is the valid session handle received from a call to StartServer().
options [Input] SBClient options. The only options currently supported are SERVER_STATE

and LAST_EVENT. SERVER_STATE can take one of the following values:

▪ 1: READY
▪ 2: BUSY
▪ 3: SHUTDOWN

The options are semicolon delimited and the option-value pairs are tilde (~)
delimited.

objectname.SetOptions(session_handle, "SERVER_STATE~1")

Last event can be set to null to clear the value contained in the internal last event
parameter. This is useful in determining whether you have missed an event in the
case where, for example, Microsoft Visual Basic discards events. An example of this
would be when you display a modal message box and Visual Basic discards events
sent to it. In order to ensure that you do not miss an event when displaying such
a dialog box, you can set the LAST_EVENT to null and then when you remove the
dialog box, use GetOptions() to see whether the value is still null or you need to
process a missed event.

timeout [Input] Optional. If specified this timeout will take precedence over the timeout
specified in StartServer().

The timeout in this method refers only to the time it takes for the client code
method call to return from SBClient. The method returns as soon as SBClient
has sent the request/data to the host; it does not wait until the host receives (or
processes) the request/data.

GetOptions()

This is used to get the various SBClient options.

Syntax

value = objectname.GetOptions(session_handle, options, timeout)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.

GetOptions()

87

instpath = sbc.GetOptions(SessionHandle, "installpath")

Parameters

Parameter Description

value [Output] The value of the requested options.
session_handle [Input] This is the valid session handle received from a call to StartServer().
options [Input] These are the various SBClient options. Currently the only supported options

are INSTALLPATH and LASTEVENT.

▪ INSTALLPATH - This returns the path of the working directory for SBClient.
▪ LASTEVENT - See SetOptions(), on page 85.

timeout [Input] Optional. If specified this timeout will take precedence over the timeout
specified in StartServer().

88

Chapter 13: VBScript API
Support for Microsoft’s VBScript language is built into SB/XA Browser Client, SB/XA Rich Client, and
SBClient.

The VBScript API enables a UniBasic programmer to pass and execute Visual Basic code from a host
system (UniData or UniVerse). Using VB Script, programmers can use standard features of Visual Basic.

SCRIPT.DEMO in DEMOBP provides an example of how to use this functionality.

The VBScript APIs are as follows:

▪ TU.SCRIPT.ADD.CODE – Adds functions or procedures to a specific module.
▪ TU.SCRIPT.ADDOBJECT – Adds an object to the name space of the scripting engine.
▪ TU.SCRIPT.CREATE – Creates an instance of the SBClientScriptControl object.
▪ TU.SCRIPT.CREATE.MODULE – Adds a new module to the scripting engine.
▪ TU.SCRIPT.EVAL – Evaluates an expression in the scripting engine.
▪ TU.SCRIPT.EXECUTE – Executes statements in the scripting engine.
▪ TU.SCRIPT.LAST.ERROR – Interrogates the script engine about the last error that occurred.
▪ TU.SCRIPT.LIST.FUNCTIONS – Returns a VM-delimited list of functions and procedures in the

specified module.
▪ TU.SCRIPT.LIST.MODULES – Interrogates the script engine as to what modules can be found in its

name space.
▪ TU.SCRIPT.RESET – Resets the scripting engine to its default state.
▪ TU.SCRIPT.RUN – Runs a function or procedure in the specified module.

TU.SCRIPT.ADD.CODE
Syntax

TU.SCRIPT.ADD.CODE(Handle, Module, Code, Reserved, Options, Status)

Description

This function is used to add functions or procedures to a specific module.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Module [P] The name of the module to which code is to be added.
Code [P] Visual Basic Script code to add to the module.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.ADDOBJECT

89

TU.SCRIPT.ADDOBJECT
Syntax

TU.SCRIPT.ADDOBJECT(Handle, ObjectName, Expose, Reserved, Options,
Status)

Description

This function is used to add functions or procedures to a specific module.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
ObjectName [P] The name or class ID of the object to be added.
Expose [P] A Boolean value to let the script engine know if the object’s members are

globally accessible. The default value is True.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.CREATE
Syntax

TU.SCRIPT.CREATE(Handle, Timeout, UseSafeSubSet, Reserved, Options,
Status)

Description

This function creates an instance of the SBClientScriptControl object. If the object has already been
created, the handle to the existing instance is returned; otherwise, the handle to the created instance
is returned.

Parameters

Parameter Description

Handle [R] The handle to the SBClientScriptControl object.
Timeout [P] The length of time, in milliseconds, for which a Visual Basic script is

allowed to run before it is considered to have stopped responding. The
default value is 10000.

UseSafeSubSet [P] A Boolean value that tells the scripting engine to execute in safe mode. If
set, this option disallows potential harmful operations. The default value is
True.

Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.

Chapter 13: VBScript API

90

Parameter Description

Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

TU.SCRIPT.CREATE.MODULE
Syntax

TU.SCRIPT.CREATE.MODULE(Handle, Module, Reserved, Options, Status)

Description

This function adds a new module to the scripting engine.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Module [P] The name of the module to be created.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.EVAL
Syntax

TU.SCRIPT.EVAL(Handle, Expression, Results, Reserved, Options, Status)

Description

This function evaluates an expression in the scripting engine. It returns the results of the evaluation in
the Results argument. After running this function, call TU.SCRIPT.LAST.ERROR() to determine if there
were any run-time errors.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Expression [P] The expression to be evaluated.
Results [R] The results of the evaluation of the expression.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.EXECUTE

91

TU.SCRIPT.EXECUTE
Syntax

TU.SCRIPT.EXECUTE(Handle, Statements, Reserved, Options, Status)

Description

This function executes statements in the scripting engine. It returns no results. After running this
function, call TU.SCRIPT.LAST.ERROR() to determine if there were any run-time errors.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Statements [P] Statements to be executed.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.LAST.ERROR
Syntax

TU.SCRIPT.LAST.ERROR(Handle, Error, Reserved, Options, Status)

Description

This function interrogates the script engine about the last error that occurred. If no error has occurred,
an empty string is returned.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Statements [R] Error string.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.LIST.FUNCTIONS
Syntax

TU.SCRIPT.LIST.FUNCTIONS(Handle, Module, Functions, Reserved, Options,
Status)

Chapter 13: VBScript API

92

Description

This function returns a VM-delimited list of functions and procedures in the specified module.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Module [P] The name of the module to query.
Functions [R] A VM-delimited list of functions and procedures located in module.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.LIST.MODULES
Syntax

TU.SCRIPT.LIST.MODULES(Handle, List, Reserved, Options, Status)

Description

This function interrogates the script engine as to what modules can be found in its name space.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
List [R] A string containing a VM-delimited list of module names.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.RESET
Syntax

TU.SCRIPT.RESET(Handle, Reserved, Options, Status)

Description

This function resets the scripting engine to its default state.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Reserved [P] Argument reserved for future use.

TU.SCRIPT.RUN

93

Parameter Description

Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.SCRIPT.RUN
Syntax

TU.SCRIPT.RUN(Handle, Module, Function, Arguments, Results, Reserved,
Options, Status)

Description

This function runs a specific function or procedure in the specified module. Any return values are
included in the Results argument.

Parameters

Parameter Description

Handle [P] The handle to the SBClientScriptControl object.
Module [P] The name of the module in which to execute the function or procedure.
Function [P] The name of the function or procedure to be executed.
Arguments [P] An SVM-delimited list of arguments.
Results [R] A string containing any results returned from the procedure call.
Reserved [P] Argument reserved for future use.
Options [P] A string of options. Reserved for future use.
Status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

94

Chapter 14: DDE Client API
These subroutines allow the host to connect to and control Windows applications (for example, to
download sales figures from the host into an Excel spreadsheet on the PC). They define the host as the
DDE client, and the Windows application as the DDE server.

SBClient can also be a DDE server, where a Windows application can be a DDE client communicating
with the host through the SBClient using similar DDE commands. For additional information, see DDE
Server Interface, on page 99.

The DDE client API is supported in SBClient only.

The DDE client subroutines are:

▪ TU.DDE.CONNECT – Initiates a DDE session with a Windows DDE server application.
▪ TU.DDE.DISCONNECT – Terminates a DDE session.
▪ TU.DDE.EXEC.MACRO – Sends a macro to a DDE server and asks the application to execute the

macro.
▪ TU.DDE.GET.ERROR – Returns a detailed reason for the failure of a DDE subroutine.
▪ TU.DDE.READ – Performs a read from a DDE server.
▪ TU.DDE.WRITE – Performs a write to a DDE server.

TU.DDE.CONNECT
Syntax

TU.DDE.CONNECT(application, topic, handle, status)

Description

Initiates a DDE session with a Windows DDE server application. To ensure that SBClient connects with
the application, start the application with TU.LAUNCH.APP before calling this subroutine.

You can use TU.DDE.CONNECT multiple times with the same application, in which case you will
receive a different handle for each conversation. After you have a conversation handle, you can use
TU.DDE.READ, TU.DDE.WRITE, or TU.DDE.EXE.MACRO to communicate with the application.

When the DDE conversation is complete, use TU.DDE.DISCONNECT to end it.

Parameters

Parameter Description

application [P] The name of the Windows application in the DDE session. The application
must be the DDE server (and not all applications can be DDE servers).
The DDE application name is not necessarily the name of the executable
application. To identify the appropriate application name, consult your
Windows or application documentation.

topic [P] The topic of the DDE conversation as defined by the application. By
convention, you can usually use the System topic to return the valid topics
for the given application.

handle [R] The unique value that identifies the DDE conversation. The handle value
is used in subsequent DDE calls from the host.

TU.DDE.DISCONNECT

95

Parameter Description

status [R] Zero indicates that the subroutine ran successfully; nonzero
indicates that it failed. To identify the specific details of any error, call
TU.DDE.GET.ERROR.

If your conversation was connected with the System topic, you may be able
to use the strings for itemname, depending on the DDE server application, as
listed in the following table.

Itemname strings for system topic connections

Parameter Description

“SysItems” Provides a list of all strings you can use with itemname.
“Topics" Provides a list of all open projects; for example, a list of open Microsoft Word

documents.
“Status” The current status of the application; for example, READY in Excel or EDIT in

Quattro Pro when a cell is being edited.
“Formats” A list of all clipboard formats supported by the application.
“Selection” A list of all items currently selected in the application; for example, in Excel

cells A3..A47 could be selected.

See also

TU.DDE.DISCONNECT, TU.DDE.EXEC.MACRO, TU.DDE.GET.ERRORTU.DDE.READ, TU.DDE.WRITE

TU.DDE.DISCONNECT
Syntax

TU.DDE.DISCONNECT(handle, status)

Description

Terminates a DDE session.

Parameters

Parameter Description

handle [P] The unique value identifying the DDE conversation. handle is the value
returned by the TU.DDE.CONNECT subroutine.

status [R] Zero indicates that the subroutine ran successfully; nonzero
indicates that it failed. To identify the specific details of any error, call
TU.DDE.GET.ERROR.

See also

TU.DDE.CONNECT, TU.DDE.EXEC.MACRO, TU.DDE.GET.ERRORTU.DDE.READ, TU.DDE.WRITE

Chapter 14: DDE Client API

96

TU.DDE.EXEC.MACRO
Syntax

TU.DDE.EXEC.MACRO(handle, timeout, data, status)

Description

Sends a macro to a Windows application and causes the application to execute the macro. Before
calling this subroutine, you must first call TU.DDE.CONNECT to initiate a DDE session.

Parameters

Parameter Description

handle [P] The unique value identifying the DDE conversation. handle is the value
returned by the TU.DDE.CONNECT subroutine.

timeout [P] The number of seconds SBClient waits for the application to respond
before returning an error status.

data [P] The macro being sent to the Windows application. data is defined by
the application and it must conform to the syntax used by the application.
For example, {PGDN} works as a macro command in Quattro Pro, but in
Microsoft Excel the equivalent macro command is [VPAGE(1)].

status [R] Zero indicates that the subroutine ran successfully; nonzero
indicates that it failed. To identify the specific details of any error, call
TU.DDE.GET.ERROR.

Note: Most DDE servers now use a relatively standard syntax for sending keystroke macro
commands. For more information on macros, see the information in the Using SBClient manual.

See also

TU.DDE.CONNECT, TU.DDE.DISCONNECT, TU.DDE.GET.ERROR, TU.DDE.READ, TU.DDE.WRITE

TU.DDE.GET.ERROR
Syntax

TU.DDE.GET.ERROR(handle, data, status)

Description

Returns an explanation for the failure of a client host library DDE subroutine.

Parameters

Parameter Description

handle [P] The unique value identifying the DDE conversation. handle is the value
returned by the TU.DDE.CONNECT subroutine.

TU.DDE.READ

97

Parameter Description

data [R] Contains the explanation for the failure of the subroutine. If the previous
call to a DDE subroutine was successful, data is undefined (that is, it must
be called after the subroutine that gave the error and before any other DDE
subroutine is called).

status [R] Zero indicates that the subroutine ran successfully; nonzero
indicates that it failed. To identify the specific details of any error, call
TU.DDE.GET.ERROR.

See also

TU.DDE.CONNECT, TU.DDE.DISCONNECT, TU.DDE.EXEC.MACRO, TU.DDE.READ, TU.DDE.WRITE

TU.DDE.READ
Syntax

TU.DDE.READ(handle, itemname, timeout, data, status)

Description

Requests data from a DDE server. Before calling this subroutine, you must first call TU.DDE.CONNECT
to initiate a DDE session.

Parameters

Parameter Description

handle [P] The unique value identifying the DDE conversation. handle is the value
returned by the TU.DDE.CONNECT subroutine.

itemname [P] The name of the data item being requested from the application.
itemname is defined by the application. In spreadsheets, this could be a
block reference such as A2..A7. In ObjectVision, this could be the name of a
field or record.

timeout [P] The number of seconds SBClient waits for the application to respond
before returning an error status.

data [R] If TU.DDE.READ is successful, data contains the value returned by the
Windows application.

status [R] Zero indicates that the subroutine ran successfully; nonzero
indicates that it failed. To identify the specific details of any error, call
TU.DDE.GET.ERROR.

Note: It is more efficient to read blocks of data rather than small strings.

See also

TU.DDE.CONNECT, TU.DDE.DISCONNECT, TU.DDE.EXEC.MACRO, TU.DDE.GET.ERROR, TU.DDE.WRITE

Chapter 14: DDE Client API

98

TU.DDE.WRITE
Syntax

TU.DDE.WRITE(handle, itemname, timeout, data, status)

Description

Initiates data upload to a DDE server. Before calling this subroutine, you must first call
TU.DDE.CONNECT to initiate a DDE session.

Parameters

Parameter Description

handle [P] The unique value identifying the DDE conversation. handle is the value
returned by the TU.DDE.CONNECT subroutine.

itemname [P] The name of the data item into which the data is to be written. itemname
is defined by the application. For example, it could be a block of cells in Excel
or a bookmark in Microsoft Word.

timeout [P] The number of seconds SBClient waits for the application to respond
before returning an error status.

data [P] The value being sent to the Windows application.
status [R] Zero indicates that the subroutine ran successfully; nonzero

indicates that it failed. To identify the specific details of any error, call
TU.DDE.GET.ERROR.

Note: It is more efficient to read blocks of data rather than small strings.

See also

TU.DDE.CONNECT, TU.DDE.DISCONNECT, TU.DDE.EXEC.MACRO, TU.DDE.GET.ERROR, TU.DDE.READ

99

Chapter 15: DDE Server Interface
The DDE protocol is a fundamental means of interprocess communication built on top of the standard
Windows messaging system, allowing Windows applications to exchange data on a real-time basis.

The DDE protocol is supported in SBClient only. To exchange data, the two participating applications
must first engage in a Dynamic Data Exchange (DDE) conversation.

The application that initiates the conversation is known as the client application, and the application
responding to the client is known as the server application. SBClient can be engaged in several
conversations at the same time, and can act as a client application in some of them and as a server
application in others.

The Word BASIC macro examples provided in this appendix are also available in the SBClient online
help, from which you can paste them into a Microsoft Word macro window (using the Tools:Macro
option in Microsoft Word) and run them.

DDE Message Components
DDE uses a three-level hierarchy of application, topic, and item to uniquely identify a unit of data.

The application name is the same as the application's Windows executable file name without its .exe
extension. For example, the application name of SBClient is SBCLIENT. This naming convention
facilitates automatic execution of the application if it is not running when a DDE Initiate request is
made.

The data source to which a DDE conversation connects in the server application is called a topic.
SBClient's topic names are not case-sensitive. The application name/topic name pair uniquely
identifies a conversation channel or conversation handle similar to a communications link instance
(such as a serial port connection or one network connection via a specific protocol). The client
that opens or creates the connection must use the returned connection reference number for all
subsequent reads and writes on the topic, and is also responsible for closing or destroying the
connection when the client is finished with it. SBClient always supports the topic “System” and
session topics, which are identified by the title of opened sessions.

The unit of data that can be read or written to is identified as an item of a specific topic. To discover
what topics are available for connection, first connect to the “System” topic, and then read the item
“Topics.” This returns a tabbed list of available topics, where individual elements are delimited with
the tab character char(9), a DDE delimiting convention.

The Microsoft Word macros in this appendix use Microsoft Word as the DDE client application and call
SBClient as their server. For example, they use the server name “SBClient” and specify either “System”
or the name of an open session as the topic. The available data items vary depending on whether you
are connected to the “System” topic or to one of the opened sessions.

When “System” is the topic, you can request the item “Sysitems,” which returns a list of all available
DDE “System” items.

Starting SBClient via DDE
SBClient allows you to create logical connections between your PC and one or more host machines. A
connection is called a session. SBClient sessions appear in their own windows with their own menus
and are available via DDE as individual topics.

Chapter 15: DDE Server Interface

100

Note: With Advanced Scripting, SBClient coordinates multiple sessions using a session manager
called termulatorappclass. This is the class that is accessed via the “System” topic.

If making your initial DDE connection to SBClient when SBClient is not currently running, your DDE
client software may automatically attempt to start SBClient by launching the Windows application
SBCLIENT.EXE. Even if this succeeds in starting SBClient, your connection may fail if you are
trying to connect to a specific session and that session does not open in time. The safest way to
start SBClient and connect to a session is by initially connecting to the “SBClient”, “System” topic.
If this connection fails, you can start SBClient from your client DDE application via a WinExecute
or equivalent command, and then try to connect to the “SBClient,” “System” topic again. Once
connected to the “System” topic, you can then read the “Topics” item to see if your session has
started successfully with a predictable name or you can start your session via the DDE system item
“create_session”.

The following shows an example of a Word BASIC macro:

Sub MAIN
DDETerminateAll
ChanNum = DDEInitiate("SBClient", "System")
MsgBox DDERequest$(ChanNum, "Topics")
DDETerminate ChanNum
End Sub

Connecting to the Session Manager

To connect to the SBClient session manager via DDE, the client application should specify the
application name without the extension (that is, “SBClient”, with a topic of “SBClient” or “System”.

Consult your application's DDE documentation for the appropriate DDE connection syntax.

After the client application is connected to the “SBClient” or “System” topic, you can DDE READ the
following items from the SBClient server:

Items that can be DDE READ via SBClient

Item Returns

SysItems A list of the items you can request from the “System” topic (this list).
Formats A list of clipboard format types (as numbers) supported by SBClient. This is

a read-only item (CF_TEXT format).
Topicfunctionlist A list of the functions that can be executed via DDE EXECUTE or via

scripting macros. This list may vary as scripts and external DDE may
register more external or internal functions to this list.

Topicfunctionlist A list of the functions that can be executed via DDE EXECUTE or via
scripting.

Topicitemlist A list of the items available under the current topic. Some may be read-
only while others may be write-only. This list can vary from moment to
moment if an external DDE application grants itself access to more or
fewer items from the “Attributes” item list.

Topics A list of the topics supported by the application at the current time.
This list may vary from moment to moment as sessions are created and
destroyed.

Connecting to the Session Manager

101

Item Returns

create_session A write-only item used to create a new session. You must pass it a stored
configuration name via DDE WRITE.

destroy_session A write-only item that requires information on how and what session
to destroy or close. This item is passed an exit-method number and an
optional name of an open session title after a tab character or value mark.

Attributes Returns a list of possible attributes supported by the topic server. Items
that do not appear in the Items or SysItems list are nonpublic items,
but these item lists are writeable and you can give yourself access to an
attribute as required. However, you may not be able to DDE READ from or
DDE WRITE to some of these attributes as they may be create-only or read-
only.

Items A list of the items you can request via the current topic. Because this is the
“System” topic, this list is identical to the “SysItems” list.

The following Word BASIC macro demonstrates the SBClient DDE Server.

Sub MAIN
' SBClient macro to demonstrate SBClient DDE Server connectivity
' This macro behaves differently if it doesn't find SBClient and
' has to launch it.
DDETerminateAll
' First test to see if SBClient is running and if not, launch it..
If AppIsRunning("SBClient") = 0 Then
'Rem 0 (zero)=Minimized window (icon), 1=Normal window,
'Rem 2=Minimized window, 3=Maximized window, 4=Deactivated window
Shell Chr$(34)+ "SBClient"+ Chr$(34), 0
' Wait a few seconds to give SBClient to fire up
RightNow = Now()
While (Now() - RightNow < 0.0001)
'MsgBox Str$(Now() - RightNow), "", - 1
Wend
End If
' Let's talk DDE !
ChanNum = DDEInitiate("sbclient", "System")
SysItems$ = DDERequest$(ChanNum, "SysItems")
Topics$ = DDERequest$(ChanNum, "Topics")
Formats$ = DDERequest$(ChanNum, "Formats")
' Lets display what we have captured via DDE...
DisplayTabbedList(SysItems$, "List of System Items")
DisplayTabbedList(Topics$, "List of System Topics")
DisplayTabbedList(Formats$, "List of System Formats")
' If there are no sessions open then this will close SBClient!
DDETerminate ChanNum
' We'll have a look for an open SBClient Session...
Tab$ = Chr$(9)
List$ = Topics$
LastItem$ = ""
' Count the number tabs contained in string
' which is equal to the number of items
cTabs = 0
FoundTab = InStr(1, List$, Tab$)
While FoundTab
cTabs = cTabs+ 1
LastItem$ = Right$(List$, Len(List$) - FoundTab)
FoundTab = InStr(FoundTab+ 1, List$, Tab$)
Wend
If cTabs > 1 Then
' FOUND an open Session !@#!

Chapter 15: DDE Server Interface

102

ChanNum = DDEInitiate("sbclient", LastItem$)
Items$ = DDERequest$(ChanNum, "Items")
Topics$ = DDERequest$(ChanNum, "Topics")
Functions$ = DDERequest$(ChanNum, "TopicFunctionList")
' Finished with session topic...
DDETerminate ChanNum
' Lets display what we have found..
DisplayTabbedList(Items$, "List of Session Items")
DisplayTabbedList(Topics$, "List of Session Topics")
DisplayTabbedList(Functions$, "List of Session Functions")
' Ok, now close the Last Session - optional extra!
'ChanNum = DDEInitiate("sbclient", "System")
'DDEPoke ChanNum, "destroy_session", "0" + Chr$(9) + LastItem$
'DDETerminate ChanNum
End If
End Sub
' This is prettier than using MsgBox ...
Sub DisplayTabbedList(srcList$, Description$)
Tab$ = Chr$(9)
AM$ = Chr$(254)
List$ = srcList$
' Count the number tabs contained in string
' which is equal to the number of items
cTabs = 0
FoundTab = InStr(1, List$, Tab$)
FoundAM = InStr(1, List$, AM$)
If FoundAM = 0 Then FoundAM = Len(List$)+ 1
While FoundTab And FoundTab < FoundAM
cTabs = cTabs+ 1
FoundTab = InStr(FoundTab+ 1, List$, Tab$)
Wend
' Create the array to hold the information
Dim ListBox$(cTabs)
' Extract tab delimited items and store in ListBox$ array
FoundTab = InStr(1, List$, Tab$)
For i = 1 To cTabs
ListBox$(i - 1) = Left$(List$, FoundTab - 1)
List$ = Right$(List$, Len(List$) - FoundTab)
FoundTab = InStr(1, List$, Tab$)
Next i
' Snag last item, if it exists!
If Len(List$) > 0 Then
FoundAM = InStr(1, List$, AM$)
If FoundAM Then
ListBox$(cTabs) = Left$(List$, FoundAM - 1)
Else
ListBox$(cTabs) = List$
End If
End If
' Create and display dialog box with items in listbox
Begin Dialog UserDialog 320, 144
ListBox 11, 23, 296, 84, ListBox$(), .ListBox
OKButton 11, 113, 296, 21
Text 11, 4, 296, 14, Description$
End Dialog
Dim dlg As UserDialog
GetCurValues dlg
Dialog dlg
End Sub

Connecting to a Session Topic

103

Connecting to a Session Topic

You can establish a connection to a session by connecting to SBClient and its session topic name.

To find a session server, or test for the existence of a session server, DDE READ the “SBClient, “Topics”
item. This is necessary because you may have multiple sessions of the same type of connection
uniquely identified by numeric suffixes.

The session topic is the session name (for example, UniData on Minotaur: 5).

Having found the name of the session with which you want to converse, initiate a new conversation
with the session name as the topic:

ChanNum = DDEInitiate("sbclient", "UniData on Minotaur: 5")

After you have connected to a session, you can request the same DDE items “Topicfunctionlist” and
“Topicitemlist” to reveal the functions and items now available.

The following shows an example of a Word BASIC macro:

Sub MAIN
DDETerminateAll
ChanNum = DDEInitiate("sbclient", "default serial: 1")
Items$ = DDERequest$(ChanNum, "Topicitemlist")
Functions$ = DDERequest$(ChanNum, "Topicfunctionlist")
DDETerminate ChanNum
DETerminate ChanNum
DisplayTabbedList(Items$, "List of Session Items")
DisplayTabbedList(Functions$, "List of Functions")
End Sub
Sub DisplayTabbedList(srcList$, Description$)
Tab$ = Chr$(9)
List$ = srcList$
' Count the number tabs contained in string
' which is equal to the number of items
cTabs = 0
FoundTab = InStr(1, List$, Tab$)
While FoundTab
cTabs = cTabs+ 1
FoundTab = InStr(FoundTab+ 1, List$, Tab$)
Wend
' Create the array to hold the information
Dim ListBox$(cTabs)
' Extract tab delimited items and store in ListBox$ array
FoundTab = InStr(1, List$, Tab$)
For i = 1 To cTabs
ListBox$(i - 1) = Left$(List$, FoundTab - 1)
List$ = Right$(List$, Len(List$) - FoundTab)
FoundTab = InStr(1, List$, Tab$)
Next i
' Snag last item, if it exists!
If Len(List$) > 0 Then
ListBox$(cTabs) = List$
End If
' Create and display dialog box with items in listbox
Begin Dialog UserDialog 320, 144
ListBox 11, 23, 296, 84, ListBox$(), .ListBox
OKButton 11, 113, 296, 21
Text 11, 4, 296, 14, Description$
End Dialog
Dim dlg As UserDialog

Chapter 15: DDE Server Interface

104

Dialog dlg
End Sub

Item Parameters
This section documents some of the items available via DDE READ, DDE WRITE, or DDE POKE.

The overall availability of the items can be gleaned from the “Items” item under the current topic. For
a description of functions you can DDE EXECUTE and find under the “topicfunctionlist” item, see the
information about macro syntax in the Using SBClient manual.

Items are described in the following table.

Item Description

attributes Read-only. Returns a tab-delimited list of items supported by this topic.
Each item is followed by a code: C (Create only), R (Read-only), or W (Write-
only).

For example:

Attributes$ = DDERequest$(ChanNum, "Attributes")

Note: UniData cannot guarantee the existence of attributes in future
releases that are not documented below. The behavior of the attributes
described here may change.

create_session Write-only. This item needs to be passed the name of a stored configuration
to use to create a session instance. For example:

DDEPoke ChanNum, "create_session", "UniData on
Minotaur"

destroy_session Write-only. This item destroys or closes the current or nominated session. If
you use this to destroy the current session and are using the current session
topic, your DDE channel or handle is invalidated as the session closes. If you
want to destroy or close the current session, reinitiate the DDE conversation
to the “System” or “SBClient” topic and issue the DDE Poke from there. By
using this method, SBClient continues running until you terminate your DDE
conversation with the “System” topic and you have not created another
session.

The write data has two components. The first is the exitmethod code. This
code can optionally be followed by a tab character or a value mark and
the name of the session to close. The name of the session to close must
be precise; it usually has a colon and an instance number appended to its
stored configuration name.

See the exitmethod table for values.
formats Read-only. Returns a list of clipboard format types (as numbers) supported

by SBClient (for example, TEXT format.). More formats may be supported in
future versions of SBClient.

items Read and write. This is a list of available items that can be DDE READ or DDE
WRITE / DDE POKE or both. If you try to DDE READ or DDE WRITE or DDE
POKE to an item not in this list, it fails. This list can be written back; access
to various items can be removed or granted as required.

Base system topic definition item

105

Item Description

keep_session_minimizedWrite-only. This is equivalent to the command line option -M, except you
can use it to turn off minimized mode by setting the value to 0. If set via the
“System” topic, sessions created subsequently are minimized (or restored)
initially and remain in that state. If set via a session topic, the session is
minimized (or restored) immediately, and the effect applies to the current
session only.

suppress_session_mode Write-only. This is equivalent to the command line option -S, except you
can use it to turn off session mode by setting the value to 0. If set via the
“System” topic, sessions created subsequently are minimized (or restored)
initially until a logon script has finished. If set via a session topic, the
session is minimized (or restored) immediately, and the effect applies to the
current session only.

topicfunctionlist Read and write. A list of the functions that can be executed via DDE
EXECUTE or via scripting macros. This list may vary because scripts and
external DDE may register more external or internal functions to this list.

topicitemlist Read and write. A list of the items available under the current topic. Some
may be read-only, others may be write-only. This list can vary from moment
to moment if an external DDE application grants itself access to more or
fewer items from the “Attributes” item list.

topics Read and write. A list of the topics supported by the application at the
current time. This list may vary from moment to moment as sessions are
created and destroyed.

exitmethod Values

Value Description

0 Full confirmation required.
1 Say NO to save configuration changes.
2 Say YES to save configuration changes.
4 Say NO to exit session dialog box or reconnect.
8 Say YES to exit session dialog box.
16 Say NEW SESSION to exit session dialog box.
32 Say NO to exit SBClient dialog box.
64 Say YES to exit SBClient dialog box.
128 Close all sessions.

Base system topic definition item

The base definition item specifying SBClient's manager DDE and macro capabilities can be found in
the TUDEFN file, item SBCLIENT.DDE. This is the “System” topic base capability list.

The layout of the item is:

Layout of System Topic Definition

Attribute Description

Attribute 1 ‘DDE’
Attribute 2 Multivalued list of “System” topics.

Chapter 15: DDE Server Interface

106

Attribute Description

Attribute 3 Multivalued list of accessible items.
Attribute 4... Local macro function definitions, one per attribute.

The format of these function definitions is:

Format of Function Definitions

Value Description

Value 1 Function name.
Value 2 Number of arguments expected.
Value 3 0 : internal, 1 : local, 2 : external function type.

Base session topic definition item

The base definition item specifying SBClient's session DDE and macro capabilities can be found in the
TUDEFN file, item SBCLIENT.SESS.DDE.

The layout of this item is as follows:

SBCLIENT.SESS.DDE Layout

Attribute Description

Attribute 1 'DDE'
Attribute 2 Multivalued list of “System” topics.
Attribute 3 Multivalued list of accessible items.
Attribute 4 … Local macro function definitions one per attribute.

The format of these function definitions is as follows:

Macro Function Definitions

Value Description

Value 1 Function name.
Value 2 Number of arguments expected.
Value 3 0 : internal, 1 : local, 2 : external function type.

Note: There are more macro functions at this level that can be DDE-executed.

107

Part IV: Application GUItization
The following topics discuss how to convert your existing character-based applications to a graphical
user interface by using SBClient.

108

Chapter 16: GUItization API
These subroutines provide GUItization functionality.

The GUItization API applies to SBClient only, except as noted.

GUItization subroutines are:

▪ TU.FORM.DIALOG – Displays a dialog box.
▪ TU.FORM.HOURGLASS – Toggles on or off the Windows hourglass cursor.
▪ TU.FORM.OPENDIR – Displays a Windows-style Directory Browse Common dialog box. Supported in

SB/XA Browser Client, SB/XA Rich Client, and SBClient.
▪ TU.FORM.OPENDOS – Displays a Windows-style Open DOS File dialog box.
▪ TU.FORM.SAVEDOS – Displays a Windows-style Save DOS File dialog box. Supported in SB/XA

Browser Client, SB/XA Rich Client, and SBClient.
▪ TU.FORM.SMARTHOURGLASS – Toggles on and off Smart Cursor functionality.
▪ TU.QUERY.TERMINAL.WINDOW – Gets the method for handling an unexpected character received

in GUI mode.
▪ TU.SHOW.TERMINAL.WINDOW – Sets the method for handling an unexpected character received in

GUI mode.

TU.FORM.DIALOG
Syntax

TU.FORM.DIALOG(returnvalue, dialogtype, message, buttons, returnvalues,
dialogtitle, error)

Description

Displays a message dialog box containing buttons with which the user can select an option. Possible
uses are for information dialog boxes, error messages, prompting for OK and Cancel actions, or for
selecting from a list of options such as Create, Amend, View, and Quit.

Parameters

Parameter Description

returnvalue [R] The value selected by the user.
dialogtype [P] The type of dialog box. This specifies the type of graphic to be displayed

in the dialog box. The value can be DLG.ERROR, DLG.QUESTION, DLG.INFO,
or DLG.WARNING.

message [P] The text message to display in the dialog box.
buttons [P] A VM-delimited list of button strings. Null indicates an OK button only.
returnvalues [P] A VM-delimited list of values each button returns when clicked.
dialogtitle [P] The form title for the dialog box.
error [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.FORM.HOURGLASS

109

TU.FORM.HOURGLASS
Syntax

TU.FORM.HOURGLASS(hourglassstate, error)

Description

Toggles on or off the Windows hourglass cursor.

Parameters

Parameter Description

hourglassstate [P] A TRUE/FALSE value to toggle on or off the hourglass. Set to TRUE when
you know an operation is time-consuming and you want to prevent users
from clicking the mouse or using the keyboard during the operation.

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

TU.FORM.OPENDIR
Syntax

TU.FORM.OPENDIR(dirpath, error)

Description

Displays a Windows-style Directory Browse Common dialog box.

This subroutine is supported in SB/XA Browser Client, SB/XA Rich Client, and SBClient.

Parameters

Parameter Description

dirpath [P] This argument contains a string for the selected directory location.
error [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.FORM.OPENDOS
Syntax

TU.FORM.OPENDOS(initialfilter, startpath, filetypes, returnpath, error)

Description

Displays a Windows-style Open DOS File dialog box, as invoked by File > Open in most Windows
applications. You can supply the filters, initial directory, and any starting filter or file name to be used.
The user can then browse the directory structures and select a DOS file or cancel the operation. If the
user cancels, a null file name is returned; otherwise, the full DOS path and file name are returned to
the application.

Chapter 16: GUItization API

110

Parameters

Parameter Description

initialfilter [P] The starting filter for the dialog box. This can be any DOS filter (for
example, *.BMP, NEWFILE.DOC, or *.*).

startpath [P] The suggested DOS path in which to find the file to be opened. If the
startpath parameter is null, the dialog box displays either the current
directory, or, if the dialog box has been invoked previously, it displays the
path used most recently to open a file.

filetypes [P] An SM-delimited list of file types to be shown in the Types combo box.
The format is:

description:SM:filter:SM:description:SM:filter …

For example, Bitmaps":SM:"*.BMP":SM:"All Files":SM:"*.*
returnpath [R] The selected DOS file. Returns null if the user does not select a file.
error [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.FORM.SAVEDOS
Syntax

TU.FORM.SAVEDOS(initialfilter, startpath, filetypes, returnpath, error)

Description

Displays a Windows-style Save DOS File dialog box, as invoked by File > Save As in most Windows
applications. You can supply the filters, initial directory, and any starting filter or file name to be
used. The user can then browse the directory structures and select or enter a DOS file or cancel the
operation. If the user cancels, a null file name is returned; otherwise, the full DOS path and file name
are returned to the application.

This subroutine is supported in SB/XA Browser Client, SB/XA Rich Client, and SBClient.

Parameters

Parameter Description

initialfilter [P] The starting filter for the dialog box. This can be any DOS filter (for
example, *.BMP, NEWFILE.DOC, or *.*).

startpath [P] The suggested DOS path in which to find the file to be opened. If the
startpath parameter is null, the dialog box displays either the current
directory, or, if the dialog box has been invoked previously, it displays the
path used most recently to open a file.

filetypes [P] An SM-delimited list of file types to be shown in the Types combo box.
The format is:

description:SM:filter:SM:description:SM:filter …

For example, Bitmaps":SM:"*.BMP":SM:"All Files":SM:"*.*
returnpath [R] The selected DOS file. Returns null if the user does not select a file.
error [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

TU.FORM.SMARTHOURGLASS

111

TU.FORM.SMARTHOURGLASS
Syntax

TU.FORM.SMARTHOURGLASS(flag, error)

Description

Used to turn on or off Smart Cursor functionality. With Smart Cursor turned on, the Windows hourglass
is displayed automatically at times when no user activity is required. For example, when loading a
form, the hourglass is displayed. When input is required, the hourglass is removed. After an input, the
hourglass reappears.

Parameters

Parameter Description

flag [P] A TRUE/FALSE value to toggle on or off this functionality. A value of -1 is
similar to FALSE, but it throws away any keyboard buffering.

error [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

TU.QUERY.TERMINAL.WINDOW
Syntax

TU.QUERY.TERMINAL.WINDOW(val, status)

Description

Gets a value indicating the method for handling an unexpected character received in GUI mode.

Note: This subroutine corresponds to the Setup GUI Parameters Screen in SBClient.

Parameters

Parameter Description

val [R] The returned value can be any of the values described in the following
table.

status [R] Zero indicates that the subroutine ran successfully; nonzero indicates
that it failed.

status values

Parameter Description

0 Never show character window.
1 Always show character window.
2 Show character window on predefined strings only.

Chapter 16: GUItization API

112

TU.SHOW.TERMINAL.WINDOW
Syntax

TU.SHOW.TERMINAL.WINDOW(option, status)

Description

Sets the method for handling an unexpected character received in GUI mode.

Note: This subroutine corresponds to the Setup GUI Parameters Screen in SBClient.

Parameters

Parameter Description

option Valid values are described in the following table.
status [R] Zero indicates that the subroutine ran successfully; nonzero indicates

that it failed.

option values

Parameter Description

0 Never show character window.
1 Always show character window.
2 Show character window on predefined strings only.

113

Appendix A: Supplementary Information

Demonstration programs
This section describes the demonstration programs that are supplied with SBClient.

About the demonstration programs

The client host library includes a number of programs demonstrating various aspects of the library's
functions. The programs are copied to the file DEMOBP during host installation.

The programs can be run by typing RUN DEMOBP programname at the command line prompt. Many of
the programs can be accessed from the application demonstration program by typing RUN DEMOBP
APPLICATION.DEMO (or APPLICATION.DEMO.MDI) at the command line prompt.

Before running the demonstration programs, first run the program BUILD.CARS by typing RUN
DEMOBP BUILD.CARS at the command line prompt.

The demonstration programs are described in the following table.

Demonstration program Description

ADD.APPOINTMENT This program demonstrate how to programmatically add an
appointment to a Microsoft Outlook calendar from a host program
running in SB/XA Browser Client or SB/XA Rich Client.

APPLICATION.DEMO and
APPLICATION.DEMO.MDI

These programs demonstrate a small application, including a MAINWIN
form, a toolbar, a menu specification, and a status bar. The .MDI variant
includes audio and video demonstrations if you have the appropriate
software on your system.

BUILD.CARS This program builds a small database used by many programs in the
demonstration suite. Run this program before any other demonstration
programs.

CHANGE.APPOINTMENT This program demonstrates how to add an appointment to a Microsoft
Outlook calendar programmatically from a host program running in SB/
XA Browser Client or SB/XA Rich Client.

CHECK.APPOINTMENTS This program demonstrates how to change an appointment in a
Microsoft Outlook calendar programmatically from a host program
running in SB/XA Browser Client or SB/XA Rich Client.

DDE.DEMO This program demonstrates the ability to launch and control a Windows
application from a host program running in an SBClient session.

DIRECTORY.DEMO This program demonstrates the DOS directory control functions in the
host library. The demo checks for a directory on the local hard disk,
creates a directory, and deletes the directory.

EXCEL This program demonstrates the ability to select data from the host,
format it, and send it to Microsoft Excel.

EXCEL.FORMULA This program demonstrates the ability to send data to Microsoft Excel,
select a range, and apply a formula, using DDE macro functionality in the
host library.

Appendix A: Supplementary Information

114

Demonstration program Description

EXCEL.GRAPH This program demonstrates the ability to select data from the host,
format it, send it to Microsoft Excel, and create a graph based on the
data transferred.

FILE.DEMO This program demonstrates the DOS file control functions in the host
library. It checks for a file on the local hard disk, creates a file, and
deletes the file.

IMAGE.DEMO This program demonstrates the ability to display a bitmap image in a
window. The program prompts for a path to a bitmap image.

LAUNCH This program demonstrates the library functions that can launch a
Windows application, check for its existence, and close the application.

MACRO This program demonstrates the library function that allows launch of
applications and full DDE control. The program loads Notepad, enters
text with spelling errors, and corrects the errors by using macro strings.

PRINTER.DEMO This program demonstrates the library functions that allow the current
Windows printer setup to be retrieved and new defaults to be set.

SELECTLIST1.DEMO,
SELECTLIST2.DEMO,
SELECTLIST3.DEMO, and
SELECTLIST4.DEMO

These programs demonstrate different ways of building and displaying a
selectlist box.

VBXDEMO This program demonstrates the ability to add VBX controls to an
SBClient form. It creates a grid whose values can be modified.

VER This program demonstrates the host library function that returns the
current version details of the installed client host library. This should be
the same as the client version number.

VIDEO.DEMO This program demonstrates the ability to display and run a video file
from a host program. A video player is displayed. You need to have
the appropriate software/drivers installed on your system to run this
program.

WINDOW.DEMO This program demonstrates the character-window drawing library
functions. A number of character windows are drawn; the screen is saved
after each draw. The process is then reversed.

WORD This program demonstrates the ability to select data from the host,
format it, and send it to Microsoft Word to format the data in a table.
WORD.BOOKMARK This program demonstrates how to download
formatted data into a Word document using TU.TO.WORD.BOOKMARK.

WORD.MERGE This program demonstrates how to download formatted data into a
Word document using TU.TO.WORD.MERGE.

Escape sequences
This section describes the extended escape sequences recognized by SBClient when received from the
host.

This section assumes considerable knowledge of GUI functionality.

About the escape sequences

115

About the escape sequences

A number of escape sequences can be executed from within any user-written host program to
enhance functionality when used with SBClient. However, we recommend using the host library
subroutines to perform these tasks where practical.

In all examples, ESC refers to the ASCII character 27, and spaces between characters are shown in the
syntax for clarity only. Do not enter spaces between characters.

The escape sequences are described in the following table.

Escape sequence Description

ESC _ 0 roccommand
ESC \

Remote Object Call command actions to be passed to the
RemoteObjectCallClass.

This sequence is unique to GUI. If GUI children have been minimized, any
sequence of this family restores GUI mode.

This sequence always sends a response to the host.
ESC _ A ESC \ Returns the SBClient session title followed by CHAR(2), the GUI leadin

character.
Draws a cleared box in the character emulation window. Variables in this
sequence are as follows:
Variable Description
col Top left column position of window.
row Top row of window.
length Total length of window (including vertical lines).
depth Total depth of window (including horizontal lines).
frame 0 : no frame, 1 : single line, 2 : double line.

ESC _ B col ; row ;
length ; depth ; frame
; style ESC \

style 0 : no style, 1 : shadow, 2 : exploding (not supported),
3 : shadow and exploding.

ESC _ C capturemode
; runcommand ESC \

Runs a Data/C++ command from the local VOC and sends a 0:CR back to the
host upon completion. If capturemode is 1 rather than 0, the captured result
is sent back to the host.

Warning: Non event-driven aware commands freeze all SBClient sessions
and GUI screens until completion. Do not use such commands for time-
consuming operations because watch-dog timers may time out and put you
'out-of-order'.

ESC _ D ! appname
ESC \

Starts a DOS application or OS command. SBClient is suspended while the
application or command is running. This is not suitable for running time-
consuming commands.

ESC _ D + appname
ESC \

Starts a Windows application. SBClient is suspended while the application is
running; for this reason, we do not recommend using this escape sequence.
Consider using ESC _ D & appname ESC \ instead.

ESC _ D & appname
ESC \

Starts a Windows application asynchronously; the application can be closed
at any time. SBClient continues to run concurrently in the background.

Appendix A: Supplementary Information

116

Escape sequence Description

Starts a Windows application as above, but n sets the display style of the
Windows application:
Display style Description
0 Run program, but hide it.
1 Run program in normal restore state mode.
2 Run minimized.
3 Run maximized.
4 Run in current state, but do not activate.
5 Run in current state.
6 Run minimized and activate top window in system list.
7 Run minimized and do not activate.
8 Run in current state and leave the currently active

window still active.

ESC _ D & n appname
ESC \

9 Same as 1.
ESC _ D ? appname
ESC \

Returns to the host either 1 (if the application is running) or 0 (if it is not
running). appname can contain a full or partial path to the executable.

ESC _ D ? ? appname
ESC \

Returns to the host either the application module handle (if the application is
running) or 0 (if it is not running). appname can contain a full or partial path
to the executable.

ESC _ D @ appname
ESC \

Returns to the host either the full pathname of the application (if the
application is running) or NUL (if it is not running). appname can contain a
full or partial full path to the executable.

ESC _ D # appname
ESC \

Posts a “Close” message to the application if it is found running. If the
application accepts the message, it returns 0 to the host; otherwise, it returns
1. appname can contain a full or partial path to the executable.

ESC _ D F title ESC \ Finds a window by given title and returns the window handle to the host
(if found) or 0 (if not found). Optionally, you can specify title in the form of
classname=title to be more specific. The classname must be the reference
name of a real window, and is best found by using a third-party windows
message SPY utility.

If the window is found, it is made active so that macro keys can be sent to it
subsequently.

The returned window’s handle may be used for the following tests and
actions.

ESC _ D I
windowhandle ESC \

Returns to the host either 1 (if a window with the reference windowhandle
is currently in an iconized state) or otherwise 0. Use ESC_DF to find the
windowhandle first.

About the escape sequences

117

Escape sequence Description

Returns to the host either 1 (if the showstyle of the window is set successfully)
or otherwise 0. Use ESC_DF to find the windowhandle first. The following are
valid values for showstyle:
Value Description
0 Hide it.
1 Show window in normal restore state mode.
2 Minimize the window.
3 Maximize the window.
4 Inactivate the window.
5 Activate the window.
6 Minimize the window and activate the top window in

the system list.
7 Minimize the window and do not activate.
8 Restore window state and leave currently active

window still active.

ESC _ D S
windowhandle =
showstyle ESC \

9 Same as 1.
ESC _ D Z
windowhandle ESC \

Returns to the host either 1 (if a window with the reference windowhandle is
currently in a zoomed or maximized state) or otherwise 0. Use ESC_DF to find
the windowhandle first.

Appendix A: Supplementary Information

118

Escape sequence Description

Creates or destroys an image. Variables in this sequence are as follows:
Variable Description
scale The percentage size change. 100 is no change from

the original size. If this value is 100, you can use width
and depth to change the scaling.

col The column position of the top left corner of the
image.

row The row position of the top left corner of the image.
width The width of the image display window. If this value is

0 or scale is not 100 percent, the size is determined by
the image's scaled width.

depth The depth of the image display window. If this value is
0 or scale is not 100 percent, the size is determined by
the image's scaled depth.

dosfname The image's DOS path and filename. The image can
be one of the following formats: Windows BMP, OS/2
BMP, PCX, or GIF.

style The image's display window style. SBClient allows
for the following style codes, most of which can be
combined: 0 – Child window locked to the default
session

▪ 1 – Pop-up, movable window
▪ 2 – Overlapped movable window
▪ 4 – Bordered window (thin)
▪ 8 – Caption on top of window
▪ 16 – Has Windows SYSMENU, requires caption
▪ 32 – Vertical scroll bar
▪ 64 – Horizontal scroll bar
▪ 128 – Has a minimize box, requires caption
▪ 256 – Has a maximize box, requires caption
▪ 512 – Initially minimized 1024 – Initially maximized
▪ 2048 – Thick framed window
▪ 4096 – Do not close window on mouse click
▪ 8192 – Fixed image size; scroll bars are used

as opposed to dynamic resizable images (by
stretching image window size)

For example, a good pop-up style is: pop-up (1) +
border (4) + system menu (16) + caption (8). The
values for these can be combined to give a single style
value of 29 (that is, 1+4+16+8).

title The optional title to display if the style code used
produces a caption. If not specified, the dosfname is
used.

ESC _ I scale ; col ;
row ; width ; depth;
dosfilename ; style ;
title ; response ESC \

response A string sent when the image is clicked with the
mouse, or a key is pressed when the image has focus.
Control characters are entered using the \nnn syntax
(for example, a carriage return is \013)

ESC _ L 1 ; application
; topic ESC \

DDE Connect sequence. Returns 0, followed by the DDE handle (if successful)
or 1, followed by an error number (if unsuccessful).

About the escape sequences

119

Escape sequence Description

ESC _ L 2 ; hDDE ESC \ DDE Disconnect sequence. Returns 0 (if successful) or 1, followed by an error
number (if unsuccessful).

ESC _ L 3 ; hDDE ;
timeout ; record ESC \

DDE Read sequence. Returns 0, followed by the result of the read (if
successful) or 1, followed by an error number (if unsuccessful). The timeout
value is in seconds.

ESC _ L 4 ; hDDE ;
timeout ; record ;
data ESC \

DDE Write sequence. Returns 0 (if successful) or 1, followed by an error
number (if unsuccessful). The timeout value is in seconds.

ESC _ L 5 ; hDDE ;
timeout ; data ESC \

DDE Execute sequence. Returns 0 (if successful) or 1, followed by an error
number (if unsuccessful). The timeout value is in seconds.

ESC _ L 8 ; hDDE ESC \ DDE Get Last Error sequence. Returns 0, followed by the last error number (if
the request is valid) or 1, followed by an error number (if it failed).

Appendix A: Supplementary Information

120

Escape sequence Description

Runs a multimedia command via a multimedia (mci) interface.

mciseq is a string as per multimedia command interface specifications, but
with these option extensions following a token:
Option extension Description
C# Convert # from columns to x pixels.
D# Convert # from character depth to pixels.
HW Substitute hCeo window handle.
HD Substitute hCeo device context handle.
I {# # # #} Invalidate rectangle.
L# Convert # from character width to pixels.
R# Convert # from rows to y pixels.
W# Convert # from character width to pixels.

ESC _ M mciseq ESC \

Returns 0 (if successful) or 1 (if unsuccessful). The following are examples of
mci sequences sent from the host to a program:

CRT CHAR(27):"_M":mci-text-string:CHAR(27):"\":
INPUT RTN.FLAG: ; * Did command work? Error?
INPUT VALUE: ; * Contains Error text or status textOption

Example mci text strings are:

OPEN \WINDOWS\CHIMES.WAV TYPE WAVEAUDIO ALIAS CHIME
PLAY CHIME WAIT
PLAY CHIME FROM 0
status chime length
status chime position
seek chime to start
play chime
seek chime to 100
play chime
save chime \sbtw\mysnd.wav
info chime file
set time format milliseconds
play chime from 100
set time format samples
play chime from 100
status chime time format
play chime from 0
status chime mode
stop chime
CLOSE CHIME

Similar commands are used for CD audio, DAT, digital video, overlay (analog
video in a window), scanner, sequencer, VCR, videodisc and animation
devices.

For example, to play track 6 of an audio CD in a PC CDROM drive:

open cdaudio
set cdaudio time format tmsf
play cdaudio from 6 to 7
close cdaudio

About the escape sequences

121

Escape sequence Description

ESC _ m
macrocommand ESC
\

Runs a macrocommand sequence from the host. For information about
special macro functions that can be executed, see the Using SBClient manual.

ESC _ P
environmentvariable
ESC \

Returns the contents of environmentvariable given back to the host. If no
environmentvariable is specified, SBOPORT is assumed.

ESC _ p R The number of rows the printer can print, based on the selected printer
and font defined in the Printer Setup and Printer Options dialog boxes. This
escape sequence must be followed by an input statement. The number of
rows is returned.

ESC _ p V ESC \ Prints the GUI window that has focus.
ESC _ R level ESC \ Restores a saved window (saved by ESC_S) from a level (slot) number

between 0 and 47.
ESC _ S level ; col ;
row ; length ; depth
ESC \

Saves a window or area or whole screen into a slot level number between 0
and 47. If col, row, length, and depth are 0, the whole screen is saved.

ESC _ T 1 ; defnname
; dosid ; date ; time
ESC \

Header to create a button bar definition.

ESC _ T 2 ; defnname
ESC \

This sequence destroys the named button bar.

ESC _ T 3 ; defnname
; dosid ; date ; time
ESC \

Header to test existence of a button bar definition. If it exists and is up-to-
date, it is displayed. The resulting status is sent back to host.

ESC _ T 4 ; defnname
ESC \

This sequence resets all buttons to the up state in the named button bar.

ESC _ T 6 ; defndata
ESC \

Intermediate sequence used to load a button bar definition with parameters.

ESC _ T n ; defnname
ESC \

Pops a pressed button between n and 100 on the named button bar.

ESC_TP1 Turns Windows print drivers on. ESC_TP0 Turns Windows print drivers off.
ESC_TS0 Disables the Transfer pull-down menu in SBClient.
ESC_TS1 Enables the Transfer pull-down menu in SBClient.

Allows you to set the parameters in the Print Options window. x is the
parameter in the Print Options window. y is the parameter setting.
Value for x Description
P Use Windows printer drivers.
Q Use SBClient print font.
R Strip box characters.
T Use condensed mode.
U OEM to ANSI conversion.
Value for y Description
1 On

ESC _ T x y ESC \

0 Off

Appendix A: Supplementary Information

122

Escape sequence Description

Converts a file from ANSI to OEM, or from OEM to ANSI. x is the conversion
type
Value for x Description
1 Converts an OEM file (file1) to ANSI (file2).

ESC _ T A x file1 ' '
file2 ESC \

0 Converts an ANSI file (file1) to OEM (file2).
ESC _ T K n ;
defnname ESC \

Resets the keyboard key mapping to emulation defaults, if n is 0, or the last
saved configuration values if n is 1.

ESC _ T S n ;
defnname ESC \

Toggles host server commands on or off. If n is 1, host server mode is
possible, enabling server menu options.

ESC _ T M n ESC \ Turns the character mouse sequences on or off. If n is 1, mouse events in the
character emulation window will be sent to the host.

ESC _ W ESC \ Runs the result of the 'who are you' sequence to the host. This is in the form
of:

SBGUI SBClientTitle-Rel-version/emulation/sessionId/

	Documentation library
	Contents
	Part I: Introduction
	Chapter 1: Overview
	SBClient Architecture

	Chapter 2: Client Host Library

	Part II: Windows integration
	Chapter 3: Character Windows API
	TU.WINDOW.DRAW
	TU.WINDOW.RESTORE
	TU.WINDOW.SAVE

	Chapter 4: Data Transfer API
	TU.ANSI.TO.OEM
	TU.DOWNLOAD
	TU.NEW.OUTLOOK.APPOINTMENT
	TU.OEM.TO.ANSI
	TU.OUTLOOK.APPOINTMENTS
	TU.OUTLOOK.GETNEXT.APPOINTMENT
	TU.OUTLOOK.SELECT.APPOINTMENTS
	TU.PC.DOWNLOAD
	TU.PC.UPLOAD
	TU.TO.EXCEL
	TU.TO.EXCEL.GRAPH
	TU.TO.MONOLOG
	TU.TO.WORD
	TU.TO.WORD.BOOKMARK
	TU.TO.WORD.MERGE
	TU.TO.WORD.MERGE.PRINTER
	TU.UPLOAD

	Chapter 5: MAPI Mail API
	TU.MAPI.ADDRESSBOOK
	TU.MAPI.DELETE
	TU.MAPI.FORWARD
	TU.MAPI.GETMAIL
	TU.MAPI.GETMESSAGE
	TU.MAPI.LOAD
	TU.MAPI.REPLY
	TU.MAPI.REPLYTOALL
	TU.MAPI.SENDMAIL
	TU.MAPI.TERMINATE
	MAPI Errors
	Error Messages

	Chapter 6: ODBC API
	TU.SQL.CONNECT
	TU.SQL.DISCONNECT
	TU.SQL.EXEC
	TU.SQL.MAKEDICT
	TU.SQL.READ

	Chapter 7: PC File Handling API
	TU.CHECK.DIRECTORY
	TU.CHECK.FILE
	TU.CREATE.DIRECTORY
	TU.CREATE.FILE
	TU.DELETE.DIRECTORY
	TU.DELETE.FILE

	Chapter 8: PC Printer Control API
	TU.GET.DEFAULT.PRINTER
	TU.GET.PRINTER.LIST
	TU.GET.PRINTER.ROWS
	TU.QUERY.PRINT.OPTIONS
	TU.SELECT.PRINTER
	TU.SEND.TO.PRINTER
	TU.SEND.TO.RAW.PRINTER
	TU.SET.PRINT.OPTIONS

	Chapter 9: Windows Process Control API
	TU.CHECK.APP
	TU.CLOSE.APP
	TU.LAUNCH.APP

	Chapter 10: Miscellaneous Windows Integration API
	TCL.SBCVERSION
	TU.CLIENT.GETENV
	TU.CLIENT.SETENV
	TU.EXECUTE.SHELL
	TU.GET.VERSION
	TU.IMAGE
	TU.MACRO
	TU.RUN.MULTIMEDIA
	TU.RUN.SBO.COMMAND
	TU.SESSION.CLOSE
	TU.VIDEO

	Part III: Advanced windows integration
	Chapter 11: Generic object manipulation API
	ROC.CREATE
	ROC.DESTROY
	ROC.GET
	ROC.GETHANDLE
	ROC.SET

	Chapter 12: OLE Server interface
	Components
	Host Interface
	SB+ Server Interface
	SBClient-specific
	SBClient Events
	SBClient Methods
	StartServer()
	ShutdownServer()
	SendEvent()
	CheckServerState()
	SetOptions()
	GetOptions()

	Chapter 13: VBScript API
	TU.SCRIPT.ADD.CODE
	TU.SCRIPT.ADDOBJECT
	TU.SCRIPT.CREATE
	TU.SCRIPT.CREATE.MODULE
	TU.SCRIPT.EVAL
	TU.SCRIPT.EXECUTE
	TU.SCRIPT.LAST.ERROR
	TU.SCRIPT.LIST.FUNCTIONS
	TU.SCRIPT.LIST.MODULES
	TU.SCRIPT.RESET
	TU.SCRIPT.RUN

	Chapter 14: DDE Client API
	TU.DDE.CONNECT
	TU.DDE.DISCONNECT
	TU.DDE.EXEC.MACRO
	TU.DDE.GET.ERROR
	TU.DDE.READ
	TU.DDE.WRITE

	Chapter 15: DDE Server Interface
	DDE Message Components
	Starting SBClient via DDE
	Connecting to the Session Manager
	Connecting to a Session Topic

	Item Parameters
	Base system topic definition item
	Base session topic definition item

	Part IV: Application GUItization
	Chapter 16: GUItization API
	TU.FORM.DIALOG
	TU.FORM.HOURGLASS
	TU.FORM.OPENDIR
	TU.FORM.OPENDOS
	TU.FORM.SAVEDOS
	TU.FORM.SMARTHOURGLASS
	TU.QUERY.TERMINAL.WINDOW
	TU.SHOW.TERMINAL.WINDOW

	Appendix A: Supplementary Information
	Demonstration programs
	About the demonstration programs

	Escape sequences
	About the escape sequences

