
Rocket SystemBuilder
Exensible Architecture

SB/XA Application Server Reference Manual

Version 6.3.0

February 2015
SBX-630-AS-RM-01

2

Notices
Edition

Publication date: February 2015
Book number: SBX-630-AS-RM-01
Product version: Version 6.3.0

Copyright
© Rocket Software, Inc. or its affiliates 1989-2015. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

3

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number

United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 800-720-1170
France 0800-180-0882
Germany 08-05-08-05-62
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Customer Portal is the primary method of obtaining support. If you have current
support and maintenance agreements with Rocket Software, you can access the Rocket Customer
Portal and report a problem, download an update, or find answers to in the U2 Knowledgebase.
To log in to the Rocket Customer Portal or to request a Rocket Customer Portal account, go to
www.rocketsoftware.com/support.

In addition to using the Rocket Customer Portal to obtain support, you can send an email to
u2support@rocketsoftware.com or use one of the following telephone numbers.

Country Telephone number

North America +1 800 729 3553
United Kingdom/France +44 (0) 800 773 771 or +44 (0) 20 8867 3691
Europe/Africa +44 (0) 20 8867 3692
Australia +1 800 707 703 or +61 (0) 29412 5450
New Zealand +0800 505 515

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:u2support@rocketsoftware.com

4

Contents

Notices... 2

Corporate information... 3

Chapter 1: Conversion codes... 7
Output Conversions..7

Date..7
Time... 8
Mask decimal.. 8
Mask character..9
Mask hexadecimal.. 10
File translate... 10
Text translate.. 10
Group extract.. 10

Input Conversions...11
Date..11
Time... 11
Mask decimal.. 11
Mask character..12
Mask hexadecimal.. 12
File translate... 12
Group extract.. 12

Chapter 2: COMMON variables...13
Section one... 13
Section two... 15
Section three...16
Notes..17

Note 1.. 17
Note 2.. 18
Note 3.. 18
Note 4.. 21
Note 5.. 22

Chapter 3: Terminal definition variable..23
Fields in the Terminal Definition... 23
Edit key numbers..25

Chapter 4: Printer definition variable... 27
Fields in the Printer Definition.. 27

Chapter 5: General processes.. 30
General Processes...30
Function keys.. 39

Chapter 6: General subroutines...42
SB.CALL.METHOD..42
SB.CALL.STATIC.METHOD...42
SB.DATECONV..43
SB.DISP.. 43
SB.DISP.BOXTEXT..44
SB.EVAL.EXP.. 45
SB.EXECUTE...45
SB.FILEVAR.S... 46
SB.INPUT... 47
SB.OPEN.FILE.. 48

Contents

5

SB.PRESERVE.COM..49
SB.PRESERVE.DATA...50
SB.PRINT.BOX..50
SB.PROCESS.. 51
SB.READ.BTREE... 51
SB.REPLACE...52
SB.SET.COMMON...52
SB.STACK.EXP..52
SB.STACK.SCREEN.. 53
SB.TEXT.EDITOR..53
SB.UPDATE.BTREE.. 54
SH.SEC.API...55
SH.VERIFY.USER.. 56
UT.GUI.TREE.. 56
UT.QPNTR..57

Chapter 7: Special report variables in report definitions.. 59
Report Variables..59

Chapter 8: Stamp attributes in revision control...60
Stamp Attributes...60

Chapter 9: Log file (OTHER.REC) layout in job scheduling.. 61
Log file layout... 61

Chapter 10: Screen refresh procedure.. 62
Screen refresh procedure...62
Notes..62

Chapter 11: DDE implementations in SB/XA Application Server... 64
DDE and SB/XA Application Server..64

DDECONNECT TO <exp1> RETURNING <handle> [WITH PATH <exp2> [MODE <exp3>]]..................... 64
DDEDISCONNECT FROM <hexp>.. 66
DDEREAD <var> FROM <hexp> USING <exp1>.. 66
DDEWRITE TO <hexp> USING <exp1> SENDING <exp2>.. 67
DDEEXECUTE TO <hexp> SENDING <exp1>.. 68
DDEGETERROR FROM <hexp>..68

Chapter 12: Aspects of GUI conversion...70
Notes on GUI Conversion... 70

Chapter 13: CEO example.. 71
CEO code example..71

Chapter 14: GUI classes and their attributes..73
Classes and their attributes...73
Attribute Descriptions...73

Chapter 15: SB OLE Server...77
About SB OLE Server.. 77

Components of SB OLE Server.. 77
SB... 77
OLE...77
Server...77

Using SB OLE Server...78
Host Interface..81
SB/XA Application Server Interface... 82
SBClient Methods..84

StartServer().. 84
ShutdownServer()... 85
SendEvent()... 86

Contents

6

CheckServerState()... 88
SetOptions().. 89
GetOptions().. 90

SBClient Events... 91
Error codes.. 92

Chapter 16: OE transaction processing...94
About Transaction Processing... 94
Issues of transaction processing... 94
Enablement, functionality, and examples.. 95

7

Chapter 1: Conversion codes
This chapter describes syntax and parameters of input and output conversion codes.

Output Conversions

Date

Syntax

D [yr][D/M/Y][delim]

Parameters

Parameter Description

yr The length of the year field, 0–4. Four is the default; if you enter nothing, the
year field is four characters.

D Entering D after the initial D in your date conversion causes the date conversion
to display only the day of the month.

M Entering M after the initial D in your date conversion causes the date
conversion to display only the moth of the year.

Y Entering Y after the initial D in your date conversion causes the date conversion
to display only the year.

delim Specify a delimiter character to replace spaces in your date output.

Internally, SB/XA Application server stores date as an integer for days passed since December 31, 1967.
On April 22, 1991, the internal date value was 8,513. If you want to display the date in output in a more
consumable manner, you can enter a date output conversion of D, which causes the date to display
in output as 22 APR 1991 in this example. You can add 0, 2, or 4 after D to change the number of
characters in the year field. Adding a second D causes the date conversion to display only the day of
the month. Adding an M after the first D causes the date conversion to display only the moth of the
year. Adding a Y after the first D causes the date conversion to display only the year. You also can
choose to specify a delimiter such as /; specifying the delimiter / causes the date to display with a /
between each element of the date instead of a space.

The following are examples of output where raw data is 8513 (the number of days since December 31,
1967):

Conversion code Date output display

D 22 APR 1991
D0 22 APR
D2 22 APR 91
D2/ 22/04/91 or 04/22/91
D2- 22-04-91 or 04-22-91
DD 22
DM 4
DY 1991

Chapter 1: Conversion codes

8

Time

Syntax

MT [H][S]

Parameters

Parameter Description

H uses a 12 -hour clock; the default is a 24-hour clock.
S includes seconds in output.

The following are examples of output where raw data is 47710 (the number of seconds since midnight;
in this case, the time is 15 minutes and 10 seconds past one o’clock in the afternoon):

Conversion code Time output display

MT 13 : 15
MTS 13 : 15 : 10
MTH 1 : 15PM
MTHS 1 : 15 : 10PM

Mask decimal

Syntax:

M [just] [dp] [scale] [Z] [,] [sign] [$] [format]

Parameters:

Parameter Description

just indicates the justification to be used (L for left and R for right)
dp the number of decimal places to be shown
scale the scaling factor (power to base 10)
Z suppresses zero fields
, inserts the comma in thousands
sign determines how positive and negative values are treated. For available

options, see the sign table in this section.
$ displays dollar sign before value
format determines how extra space in the field is handled. For available options, see

the format table in this section.

The following table describes the options for sign.

Sign option Description

C Negative values are followed by CR.
D Positive values are followed by DB.
E Negative values are enclosed in <>.

Mask character

9

Sign option Description

M Negative values are followed by minus sign.
N Suppresses (leading) minus sign.

The following table describes the options for format.

Format option Description

#n Fills with spaces to length n
%n Fills with zeroes to length n
*n Fills with asterisks to length n

The following table shows examples of output where the raw data is 123456:

Conversion code Output display

MR22 1234.56
MD2#10 1234.56 (preceded by three spaces)
MR,$ $123,456
MR%10 0000123456

Mask character

Syntax

MCcharcode

Parameters

The following table describes available charcode options.

Parameter Description

A All alphabetic characters
N All numeric characters
L All uppercase to lowercase
U All lowercase to uppercase
T Uppercase to lowercase starting with second character per word
DX Converts decimal into hexadecimal equivalent
XD Converts hexadecimal into decimal equivalent

The following are examples of output where raw data is THE CAT2.

Conversion code Output

MCL the cat2
MCT The Cat2
MCA THECAT
MCN 2

Chapter 1: Conversion codes

10

Mask hexadecimal

Syntax:

MX

Converts any ASCII string to its hexadecimal equivalent.

File translate

Syntax

T [DICT] filename;X [vmc] ;;amc

Parameter Description

filename the file name
vmc the value to return
amc the attribute to return

Text translate

Syntax

Tstartpos, length

Parameters

Parameter Description

startpos the start character position in string to extract
length the number of characters to return

The following table shows examples of output where raw data is JACOBSEN.

Conversion code Output

T1,5 JACOB
T3,2 CO

Group extract

Syntax

G [skipsegment]delim getsegment

Parameters

Parameter Description

skipsegment the number of segments to skip over (Default is 0.)

Input Conversions

11

Parameter Description

delim the character to delimit segments
getsegment the number of segments to return

The following are examples of output where raw data is 98*COM*ABC

Conversion code Output
G2*1 ABC
G*1 98
G1*2 COM*ABC

Input Conversions

Date

Syntax

D [xx]

Valid input formats
▪ dd mm yyyy
▪ dd/mm/yy (or any other delimiter)

Time

Syntax

MT [x]

Valid input formats
▪ hh : mm [AM/PM]
▪ hh : mm : ss [AM/PM]

The output value is the number of seconds elapsed after midnight.

Mask decimal

Syntax

M [R/L/D][dp][scale]

The output value is the value multiplied by scale.

Chapter 1: Conversion codes

12

Mask character

Syntax

MCU MCL MCT MCDX MCXD

The output value is the same as the output conversion.

Mask hexadecimal

Syntax

MX

Converts a hexadecimal string to its ASCII equivalent.

File translate

The output value is the same as the output conversion.

Group extract

The output value is the same as the output conversion.

13

Chapter 2: COMMON variables
SB/XA Application Server uses COMMON variables, which are described in this chapter. COMMON is
divided into three sections.

Section 1 These variables are preserved whenever a process calls another process that
uses the variables (such as screens, reports, and menus). In most cases, they are
restored when the called process exits; however, the first four variables are not
restored if the called process is an input/output process defined with the subscreen
option S.

Section 2 These variables constantly change during a session. For example, the variables
change when you enter your user ID and password at login.

Section 3 These variables are essentially static during a session. They are set up by the
subroutine SB.SET.COMMON.

Section one
These variables are preserved whenever a process calls another process that uses the variables
(such as screens, reports, and menus). In most cases, they are restored when the called process exits;
however, the first four variables are not restored if the called process is an input/output process
defined with the subscreen option S.

RECORD The current record.

Note: Record locking works only to prevent users from opening the same
record in multiple sessions. It is possible for a user to open multiple instances
of a record for editing in a single session, but this is not advised. Each instance
of a record is treated as the COMMON variable RECORD when it is in focus.
If you save your changes in one instance of the record and then save your
changes in a second instance of the same record, the data in the second
instance of the record overwrites the data in the first instance of the record.
The record lock is released after data in the first instance of the record is
written to the database.

KEY Current record key
WORK Work variable
OTHER.REC Alternate record. OTHER.REC is used when you capture into a secondary file

record, usually through input-derived fields. OTHER.REC is also used by the
Job Scheduler to maintain the log record. For more information, see Log file
(OTHER.REC) layout in job scheduling, on page 61.

LF.INFO Logical file definition variable
CNT Current multivalued number being processed, or 0 if not multivalued
ACTION Current action being processed, numbered 1, 2, 3, or 0. For a description of

what each numbered action does, see the COMMON variables, ACTION table
in this section.

LINE Current driver line being processed, multivalued. For a list of line numbers and
their respective descriptions, see the COMMON variables, LINE table in this
section.

MAINFILE The name of the primary file being processed
F.FILE File variable on which the primary file opened
ORIG.REC Original version of record, prior to update in screen

Chapter 2: COMMON variables

14

LOCK.KEY Key of record currently locked in F.FILE.
HEAD Current screen heading
SCR.IMAGE String of all text displayed on screen (with embedded cursor addressing)
STATUS.LINE Status line display string
BOX.CORDS Coordinates of window; multivalued col,row,length,depth
OUTVAL Data values of each field in screen (with embedded cursor addressing). (See

Note 5, on page 22.)
OUTVAL.FLAGS Multivalued window start/end/page information and flags for OUTVAL
F.INDX Index file variable for file opened to F.FILE
F.INDX.DEFNS Index file definition for index opened to F.INDX
GUI SB GUI flag
GUIRES SB reserved variable
USERDATA(10) A dimensioned array of 10 elements, available to users and not used by any SB

function.

USERDATA() cannot be used to store static variables unless the data stored
in USERDATA() is itself static. USERDATA() is subject to normal Section 1 be-
havior, in that the variable is preserved whenever any process calls anoth-
er process that uses the Section 1 variables, and is restored on exit from the
called process. The USERDATA() variable is not cleared between levels. If a
process varies the contents of USERDATA(), the changes are not preserved
when the process exits, and the contents revert to what they were before the
process call USERDATA().

Elements are not cleared by SB/XA Application Server at any time, after initial-
ization to null by SB.SET.COMMON.

SCREENNO The current screen number in a set of linked screens.
XUI Internal XUI flag.
SERVICE.INFO Internal for use by SB+.
EXPRESS.VARS Internal for use by SB+.

Flag to activate session-based logging on SB/XA Application Server.
0 Logging is not activated.

DEBUG.LOGGING

1 Logging is activated.
USER.DEBUG The name of the user-defined debug program. When activated, this program

is called before and after every call to a process or program within SB.
Parameters passed are:

▪ The name of the calling process
▪ The type of call (process or program)
▪ A Before/After flag.

FREE.TEMP(14) Reserved for future use by SB/XA Application Server

Table 1: COMMON variables, ACTION

Action Description

1 insert
2 amend
3 delete
0 unknown (prior to record read)

Section two

15

Table 2: COMMON variables, LINE

Line Description

1 amc
2 vmc (0: not multivalued; 1: control lines; 2: dependent)
3 column
4 row
5 derived field detail/output conversion
6 field number
7 window size (if multivalued)
8 length
9 type (0: alphanumeric; 1: numeric)
10 input conversion expression, output-to-input
11 svm 1: allow amend (and multivalued restricted options AID); 2: delete process

(controlling multivalue); 3: amc of keys (controlling multivalue derived fields);
4: line skips in window display; 5: multivalue flag display code

12 default
13 validation
14 svm 1 : mandatory (0: no; 1: yes), 2: process before = 1, 3: mandatory skip de-

fault = 1 (release 3.n)
15 stepnos of recalc fields (svms)
16 dependent amcs (for controlling multivalues); controlling stepno (for

dependent mvs)
17 help
18 field name
19 stepnos of non-multivalued recalc fields (for controlling multivalues, used

when deleting a line)
20 input conversion expression, input-to-output (optional). If null, use output

conversion.

Section two
These variables constantly change during a session. For example, the variables change when you enter
your user ID and password at login.

VALUE Current value entered or set for default
RTN.FLAG Flag to determine action after a process is called. (See Note 1, on page 17.)
PARAM Used to pass data to a subroutine. Contains the string specified after a comma in a

subroutine call.
Set to refresh screen. Options are as follows:
1 refresh current window/screen
2 refresh data values only in current screen
-2 rebuild screen image in OUTVAL, then refresh current screen data val-

ues
3 refresh complete screen (all levels)
4 wipe reminder lines

REFRESH

7 refresh current VALUE, according to LINE

Chapter 2: COMMON variables

16

MENU.OPT Most recent menu option number selected
PROC.NAME Multi-attributed stack of process names called; first equals current
LEVEL.NO Current level of screen/window display
FILES.OPENED Multi-attribute list of file names opened
FILEVAR An array of 30 elements: Corresponding variables on which files opened
PARMS An array of 40 elements reserved for users
SBPARM An array of 20 elements used by SB tools to pass data where required
OTHER An array of elements used by SB/XA Application Server. For a description of the

OTHER options, see the following table.

Table 3: OTHER options

OTHER(1) Edit key parameters
OTHER(2) Secondary record being updated
OTHER(3) Current driver ID
OTHER(4) Transaction ID
OTHER(5) Batch key/number (in transaction entry)
OTHER(6) Batch record (in transaction entry)
OTHER(8) Report variables (see Note 2, on page 18).
OTHER(9) Break totals in report
OTHER(10) Grand totals in report
OTHER(11) Global process file pointer (version 2.1 and later)
OTHER(12) Verb to be executed
OTHER(13) Menu path
OTHER(14) Color stack
OTHER(15) Global menus file pointer (version 2.1 to 5.3.3). A count of items returned by the

selection process (version 5.3.4 and later)
OTHER(16) Global help file pointer (version 2.1 and later)
OTHER(17) Current job schedule names running
OTHER(18) Number of last edit key used. (This feature is available in character mode only. The

internal design of a graphical user interface precludes returning the last edit key.)
OTHER(19) Select list for selected platforms
OTHER(20) Count of data stacked items for selected platforms

Section three
These variables are essentially static during a session. They are set up by the subroutine
SB.SET.COMMON.

SB.CONT SB+ control record as defined in SB+ Setup. (See Note 3, on page 18.)
CONTROL Control record for current system ID.
PORT Current port user logged on
SYSID Current system ID selected
ACNT.NAME Current account name
TERM.DEFN Terminal definition record. (See Terminal definition variable, on page 23.)
PRINT.DEFN Printer definition record. (See Printer definition variable, on page 27.)

Notes

17

PASS.DEFN Security definition for user
USER.ID User ID

User macro key strings:
1.M user flags
2.M lead characters

USER.KEYS

3.M corresponding macro string
Flag indicating whether the terminal is using SB PC emulation program:
0 no emulation
1 SBClient
2 SBTermite
3 SB/XA Rich Client

PCTERM

4 SB/XA Browser Client
F.MD File variable on which VOC opened
F.DMCONT File variable on which SB file DMCONT opened
F.DMDRIV File variable on which SB file DMDRIVERS opened
F.PASS File variable on which SB file DMSECURITY opened
F.CONT File variable on which system control file xxCONTROL opened
F.PROC File variable on which system process file xxPROCESS opened
F.MENU File variable on which system menu file xxMENUS opened
F.DMPROC File variable on which SB file DMPROCESS opened
F.DEFN File variable on which system definition file xxDEFN opened
F.G.PROC File variable for system global process file (if any)
F.G.MENU File variable for system global menu file (if any)
F.G.DEFN File variable for system global definition file (if any)
F.DMSYSDEFN File variable on which SB file DMSYSDEFN opened
BT.NODE(7) The node details for a given level in the B-tree
BT.LEV.NO Level number in the B-tree
BT.ID The list of IDs for a given node of a given B-tree
BT.POS Position within B-tree mode
GUIDATA Reserved for GUI mode use
SBCLIENT SBClient data
RES1 Reserved for use by SB/XA Application Server
RES2 Reserved for use by SB/XA Application Server
XUIDATA Reserved for XUI mode use

Notes

Note 1

The following are valid RTN.FLAG values with the action SB/XA Application Server takes in each case:

RTN.FLAG value action

0 Goes to next step.

Chapter 2: COMMON variables

18

RTN.FLAG value action

n Goes back n input steps.
U Goes to the update step.
D [E] Sets the delete flag and goes to the update step. E asks for confirmation.
X Exits process.
S [n] Skips n input steps. If no n is specified, skips current input.
T [n] Goes to the top of screen n. If + or – before n, adds or subtracts n from the

current screen number.
B [n] Goes to the bottom of screen n. You can specify + or – before n to indicate

the number of input steps after and before the bottom of the screen.
I[n/K/R] Goes to input step, where n is step number n;n.m is step number n, value

m (only for multivalued fields); K is key step; and R is step after read
record.

Ln Goes to line n (stepno n). If + or – before n, adds or subtracts n from the
current step number.

Fn Executes the process attached to function key n when returning to screen.
Pprocname Executes the process procname when returning to screen.
{fieldname[,new_cnt]} Goes to the field fieldname, if a field of this name is on the current screen.

Use new_cnt to ensure proper tracking of @CNT if you are moving within
a grid, particularly if you want to go to a specific row that is different from
the default processing. If you are not in a grid, you do not need to use
new_cnt.

Note 2

OTHER(8) contains special report variables during the execution of a report. Symbolic names are
equated to these variables (attributes of OTHER (8)). See Special report variables in report definitions,
on page 59

Note 3

The SB+ control record (SB.CONT) contains the following attributes:

1 Millisecond delay before checking SYSTEM(14).
Other language
0 no

2

1 yes
Heading display
0 no

3

1 heading on top line
4 Prompt line
5 Error message line
6 Help reminder line

Note 3

19

Accept screen prompt
0 no

7

1 yes
8 Maximum levels before warning
9 Operating environment type
10 Frame size (default is 512)

Converts field description to lowercase
0 no

11

1 yes
Lowercase display
0 no

12

1 yes
13 Input key user exit address (MData, Ultimate, and IBC); also user exits for ‘smart-

refresh’ (PC/R83).
14 Maximum item size (for example, 32256;0 is unlimited).
15.1 Uses function key help on lookup window.
15.2 Uses operating environment B-trees (0 is no; 1 :is yes).
15.3 Inhibits 'auto' current field accept on F2 in screens.
15.4 Limits mouse click functionality and inhibits F2 on dependent multivalued fields.

Reset INPVAL after failed validation.
<15,5> = 1 reset INPVAL to original value.

15.5

<15,5> = 2 reset INPVAL to the VALUE.

Note: VALUE can be changed in the validation process.
15.6 Enable 'No Refresh' feature in GUI mode.
15.7 Exclude HELP_STRING when building GUI drivers.

CUA arrow movement
0 no

16

1 yes
17 Reserved
18 Mouse double-click interval in milliseconds
19 Reserved

Date format
I International

20

A American
21 Path name to UniVerse/Information/UniData.
22 Path delimiter (such as / or > or \)
23 Group name (UNIX only)
24 Umask (Numeric, range = 000-777) (UNIX only)
25 Maximum length of a directory name (characters)
26.1 Decimal character value for Enter key (13 or 10)
26.2 Decimal character value for Enter key (8)
26.3 Inhibit input key delay if set to 1. Used for some ‘smart serial’ cards.
27.1 Character to call process from input (/)

Chapter 2: COMMON variables

20

27.2 Character to call help from input (?)
27.3 Character to delete from input (\)
28 Reserved
29 Unix version

Action bar display style
0 compact

30.1

n determines the spacing of text on the action bar.
30.2 Action bar highlight terminal definition effect number
30.3 Action bar display line (0 or 1)
30.4 Use new LFK style in GUI mode.
30.5 Adjust the form width/depth to accommodate toolbar.
30.6 Use “97” Style buttons on toolbar.
30.7 Use sbpluslistviewclass for GUI selects.
30.8 Perform F1 help check in GUI input.
31.1 Displays USERID in logon screens.
31.2 Displays asterisks when entering passwords.

Window frame default
0 none
1 single

32

2 double
Window style default
0 name
1 shadows
2 explode

33

3 both
Create D/I type dictionaries
0 no

34.1 (UniVerse)

1 yes
Create I type dictionaries instead of 'V'
0 no

34.1 (UniData)

1 yes
34.2 Reserved
34.3 Reserved
34.4 (UniData) True if using UDT:Print.

Media verification method.
0 or null Use SEL-RESTORE

35.1

1 Use T-VERIFY. For more information on T-VERIFY, see the T-
VERIFY notes in this section.

36 Reserved
Transaction processing enabled
0 no

37.1

1 yes

Note 4

21

Warn on Error flag
0 no

37.2

1 yes
37.3 Process on Commit Fail.
38 Reserved
39 DDE timeout

Enable multilanguage support
0 no

41

1 yes

T-VERIFY

If T-VERIFY method is specified, Account-Save/File-Save media is verified with T-VERIFY options
TAFN and TFN respectively.

If other options are required for T-VERIFY, set the following:

35.1.1 Account-Save T-VERIFY options.
35.1.2 File-Save T-VERIFY options.
35.2 List storage method. This is used for process/menu name lists, in attributes 3 to 5

within the COMMON variable PASS.DEFN.
0 or null(default) Multivalued list of names
1 Length-based partitioning. Names of length n, stored

subvalue-mark delimited in value n.
>1 Hashing algorithm used to distribute names into multivalued

‘hash table’ of specified sizes. This should be a prime
number.

Note:

If the storage method is changed, run the /UPDATE.SECURITY process from within
the SB account.

The list of process names in PASS.DEFN<1> is stored using method 1.

Note 4

SBPARM(18) contains useful information relating to the current highlighted or selected menu option:

1 Process name attached to the last-selected menu option
2 Help code attached to current highlighted menu option
3.1 Column of last-selected menu option
3.2 Row of last-selected menu option
3.3 Length of last-selected menu option
3.4 Menu type of previous menu
3.5 Level number of previous menu

Chapter 2: COMMON variables

22

Note 5

Before version 3, the maximum number of fields on a screen was limited to 36. This was due to the size
of the dimensioned array OUTVAL() in the SB COMMON block.

The OUTVAL() array in COMMON has been replaced with two simple variables, OUTVAL and
OUTVAL.FLAGS, which are updated as dynamic arrays. If you use the OUTVAL() array in processes and
subroutines, you need to modify their code accordingly.

The usage of the variables is as follows:

OUTVAL stores the screen image as an attribute-delimited dynamic array. Attribute 1 contains display
data for field 1, and so on. Multivalued display data is stored value-delimited in the attribute.

OUTVAL.FLAGS stores flags for each field in a value-delimited format:

<1, fldno> Start positions for multivalued ‘windows’ or null
<2, fldno> End positions for multivalued ‘windows’ or null
<3, fldno> Page number for multivalued ‘windows’ or null
<4, fldno> Multivalued page indicator display for multivalued ‘windows’ or null
<5, fldno> Flag attribute; normally 0 or null. If set to 1, the OUTVAL contents are ignored

during refresh actions.

23

Chapter 3: Terminal definition variable
This chapter describes the terminal definition stored in the COMMON variable TERM.DEFN.

Fields in the Terminal Definition
The terminal definition contains the following fields:

Table 4: Terminal Definition Variable

AMC.VMC Description

1 $TERM
2 Description
3.M Video escape sequence on
3.1 Half-intensity on
3.2 Reverse video on
3.3 Underline on
3.4 Blink on
3.5 132 column/horizontal compressed on
3.6 Expanded on
3.7 Auxiliary port on
3.8 Mouse enable on
3.9-10 Reserved
3.11 Font 1/action bar highlight
3.12 Font 2
4.M Escape sequence off
5.1/2 Standard number of columns/rows
5.3/4 Condensed number of columns/rows
6.M Graphic characters
6.1 Horizontal character single line
6.2 Vertical character single line
6.3 Box – top left single line
6.4 Box – top right single line
6.5 Box – bottom left single line
6.6 Box – bottom right single line
6.7 Box – top T single line
6.8 Box – bottom T single line
6.9 Box – left T single line
6.10 Box – right T single line
6.11 Box – cross single line
6.12 Graph block
6.13 Box – blank space character
6.14-6.24 Box characters double line (as for 6.1 to 6.11, but for double lines)
6.25 Previous page indicator

Chapter 3: Terminal definition variable

24

AMC.VMC Description

6.26 Next page indicator
7.1/2 Graphics mode on/off
8 OE term type
9.M Download character sequence
10 DOS terminal emulator (0 : none, 1 : SBTerm, 2 : SBTermite)
11.M Edit keys (also see “Edit Key Numbers” below)
12 Embedded video attribute (Y/N)
13 Support color (Y/N)
14.M Color definitions
14.1 Standard background, foreground colors
14.2 Default menu background, high, low, select background/foreground colors
14.3 Default screen background, high, low colors
14.4 Help background, high, low colors
14.5 Lookup background, high, low, select background and foreground colors
14.6 Prompt background, foreground colors
14.7 Function keys background, foreground colors
14.8 Error message background, foreground colors
14.9 Dialog box background, high, low, select background and foreground colors
15 Terminal ID
16 Additional parameters for edit keys
17.M Cursor position parameters
17.1 ANSI flag (1 : ANSI, 0 : not)
17.2 @(x,y) Lead-in sequence
17.3 Column first (Y/N)
17.4 Separator between column and row
17.5 @(x,y) Terminate characters
17.6 Base offset column
17.7 Base offset row
17.8 Column BCD increment (Y/N)
17.9 Row BCD increment (Y/N)
17.10 Clear screen sequence; default is @(–1)
17.11 Clear to end of line; default is @(–4)
17.12 Clear to end of page; default is @(–3)
17.13 Fill screen with character sequence
18 User-defined sequence description
19.M Additional user-defined terminal sequences
20.1 Post download sleep delay for recovery (seconds)
20.2 Resend download when switching accounts (Logto)
20.3 Process ID (UniVerse only)
20.4-20.13 Mouse/pointer parameters
21.M D Color control characters (foreground)
22.M D Color control characters (background)
23.M C Color descriptions

Edit key numbers

25

AMC.VMC Description

24.M C Escape sequence description
25.M.C Additional keys
26.M Additional decimal values
27.M D Additional descriptions
28.M D Graphic character descriptions
*29.M C Smart refresh sorted escape sequences
*30.M D Smart refresh token characters for sequences in 29.M
31 High character limit; if null, set to 256
32 Product codes ‘W’in, ‘D’os, ‘N’et, ‘S’ql
33.M D GUI tokens for transporting system delimiters
34.M C GUI token descriptions
35 GUI mode enabled (1 : Y, 0 : N)
36 Use SEND & GET for data transfer
37 SB.ROC to create a DEBUG log
38 Client release number
39 SBClient TCP pad flag
40 SBCom GUI Server flag

*loaded at run time only

Edit key numbers
Edit key number Description

1 Cursor Back
2 Cursor Forward
3 Cursor Up
4 Cursor Down
5 Start Line
6 End Line
7 Insert Toggle
8 Delete Character
9 Erase From Cursor to End Of Line
10 Next Word
11 Previous Word
12 Extend Length/Search Again
13 Quit Process
14 Esc key
15 User Macro Lead-in Character
16 Insert Line
17 Delete Line
18 Page Up
19 Page Down
20 Top of Text

Chapter 3: Terminal definition variable

26

Edit key number Description

21 Bottom of Text
22 Tab (next controlling multivalued)
23 Invoke Text Editor
24 Invoke Intuitive Help
25 Backtab
26-28 Reserved
29 Mouse Lead-in Characters
30 GUI Lead-in Sequence
31-40 Function Keys 1 - 10

27

Chapter 4: Printer definition variable
This chapter describes the current printer definition stored in the COMMON variable PRINT.DEFN.

Fields in the Printer Definition
The following fields represent the contents of the COMMON variable PRINT.DEFN and the other
DMSECURITY item, $PRINT:PORT/$AUX:PORT.

PRINT.DEFN is built from the physical printer, printer class, and stationery records, and is saved
as $PRINT:PORT. In the case of an auxiliary printer, the definition is saved as $AUX:PORT when the
auxiliary output is selected within SH.PRINT.MANAGER.

This mapping occurs at SB.LOGIN or when the CHANGE.PRINTER process is used. A partial remap of
PRINT.DEFN occurs within SH.PRINT.MANAGER, if a new printer is selected.

The printer definition contains the following fields:

Table 5: Printer Definition Variable

AMC.VMC Description

1 "$PRINT"
2 Description (from physical printer record)
3.M Escape sequence on:
3.1 Bold
3.2 Reverse
3.3 Underline
3.4 Margin
3.5 Compressed
3.6 Expanded
3.7 Change Bin
3.8 Normal font
3.9 Small font
3.10 Large font
3.11 User-defined
4.M Escape sequence off
5.1/2 Standard columns/rows (from stationery attached to the printer class)
5.3 Report Writer Padding flag
5.4/5 Condensed columns/rows (from the printer class definition)
Graphic characters:
6.1 Horizontal character
6.2 Vertical character
6.3 Box – top left
6.4 Box – top right
6.5 Box – bottom left
6.6 Box – bottom right
6.7 Box – top T

Chapter 4: Printer definition variable

28

AMC.VMC Description

6.8 Box – bottom T
6.9 Box – left T
6.10 Box – right T
6.11 Box – cross
6.12 Box – graph block
6.13 Box – blank space character
7.1/2 Graphics mode on/off
8 Form queue number or name
From Physical Printer Stationery Type table:
9.M C Stationery type
10.M D Stationery type set sequences
11.M D Stationery type reset sequences
12.M D Stationery type orientation sequences
13 Support color (Y/N)
14.M Colors (as per Terminal Definitions prompts)
15 Physical printer name
16 Location (group)
17 Not used
18 Printer class
19-20 Not used
21 Print Banner (string or expression)
22-24 Not used
25 Physical printer additional sequences
26 Stationary type additional sequences
27-28 Not used
SB (internal execution) printer details stack:

The current parameter is in the first subvalue.
29.1 C Printer names
29.2 D Stationery IDs
29.3 D Number of copies
29.4 D Special assignment details
29.5 D Physical printer set sequence
29.6 D Physical printer reset sequence
29.7 D Stationery set sequence
29.8 D Stationery reset sequence
29.9 D Orientation sequence
Additional information relating to UniVerse installations:
30 Path to the device
31 Lock file paths to be used
32 Form name currently active on the printer
33 Flow control
34 Printing enabled
35 Queuing enabled

Fields in the Printer Definition

29

AMC.VMC Description

36 Baud rate
37 Parity
38 Carriage return conversion
39 Expands tab characters into spaces
40 FF delay
41 LF delay
42 Word length
43.M Other options
44 Printer driver path
User-definable SB/UniVerse interaction parameters:
45.1 Include printer name in SETPTRs (Y/N)
45.2 Not used for UniVerse
45.3 Not used for UniVerse
45.4 Include form name in SETPTRs (Y/N)
45.5 Create form name in sp.config (Y/N)
45.6 Not used for UniVerse
45.7 Not used for UniVerse
45.8 Not used for UniVerse

30

Chapter 5: General processes
This chapter describes general processes not linked to any menu and function keys.

General Processes
ABORT

Aborts the current process or processes and returns to the last menu option. You can use
ABORT,6,procname, where procname is run before returning to the menu. This effectively clears all
memory and chains MM, passing procname and the last valid menu path.

APPOINTMENT

Maintains user appointments without displaying the To Do list.

APPOINTMENTS

Displays the current day’s appointments for an active user.

BUILD.EQUATES

Builds a record of field names equated to field positions for inclusion in BASIC subroutines.

The file name and item ID of the record are requested when the process is invoked.

CALC.DEFAULT.SETUP

Use this process to set OE precision when determining masks for numbers displayed in SB calculator (/
CALC). This sets defaults for the calculator display for new users.

CALC.SETUP

Use this process to change OE precision mask for your SB pop-up calculator.

CALL.HELP , id [opt]

Displays help with item ID specified by id.

This is useful as a process called by a function key in a screen to give general help about the screen.

opt (options) may be:

N No refresh action.
I Input at end and then refresh.
P Input at end and no refresh.

CHANGE.AUX.PRINTER

This allows you to change your current default auxiliary printer (for your current login session only),
depending on your security settings.

General Processes

31

CHANGE.PRINTER

This process allows you to change your current print defaults, as displayed in the Printer Selection
screen, for the current login session only.

The Printer Selection screen is displayed (depending on your security settings), where you can change
the current defaults (within the location restrictions). The new defaults are displayed in the Printer
Selection screen (unless overridden by a report assignment) for the life of the current login session.
When you next log in, your normal defaults are in effect.

For example, your current defaults are incorrect, due to a change in the printer entity, whether it be
Printer Class, Stationery Type, or another parameter. Running this process allows you to change the
defaults until a permanent change can be arranged with the administrator.

This process may be disallowed in Group Security, if necessary.

CHANGE.TERMINAL

This process allows you to change the terminal definition on the fly. The new terminal definition is
loaded into the COMMON variable TERM.DEFN, and any OE-related terminal commands performed.

For example, at login you may have entered the incorrect terminal type. If you are still able to enter
text, running this process corrects the Terminal Definition.

When changing terminal definitions, previous stacked screens cannot be redisplayed correctly
because they are stored internally with embedded cursor/video attribute sequences that may no
longer be valid. Exit to the OE shell, and then reenter SB/XA Application Server via MM to correct any
screen stack/display problems.

CLEAN.GDS

Resets the standard GDS records back to their factory default values, based on records in DMCONT.

CLEAN.MY.POSCACHE

Run this process to delete the DMPOSCACHE (form position cache) item for the current user.

CLEAN.POSCACHE

Run this process to delete the DMPOSCACHE (form position cache) item for specified users. This
process prompts you to enter the user IDs of users for whom to clear the cache.

CLEAN.ALL.POSCACHE

Run this process to delete the DMPOSCACHE (form position cache) item for all users.

CLEAN.SBHSTATE

The CLEAN.SBHSTATE process clears the DATA level of the SBHSTATE file. SBClient stores GUI
definitions in this file. Under normal circumstances, you do not need to clear this file and should do so
only if advised by SB support personnel.

The process is valid in SBClient sessions only.

CLEAN.SYSTEM

SB/XA Application Server creates various temporary items during its operation. The xxCONTROL and
xxWORK files store most temporary items.

Chapter 5: General processes

32

SB/XA Application Server does not normally clear these items after they are used. The items are not
cleared for several reasons, most significantly to avoid degrading system performance. As a result,
these files can become quite large, which can affect system performance.

In any application, CLEAN.SYSTEM clears temporary items from the xxCONTROL and xxWORK files.

In the SA application, CLEAN.SYSTEM also clears temporary items from DMSECURITY, clears SB license
tracking data, and logs off when complete. A prompt states that all users must be logged off before
you run this part of the process.

COMMON

Allows you to display and modify COMMON variables, providing a useful tool for developers who want
to debug or experiment with different COMMON variable values in their applications. For additional
information on this process, see COMMON variables, on page 13.

DEBUG

Displays the contents of any COMMON variable.

DIALOG,id

Displays a dialog box with the name of the definition specified by id.

DIARY.PURGE

Purges selected records from the DMDIARY.ARCHIVE file.

DOS.TDUMP sbfname TO dosfile (options

(SBClient only.) Transfers multiple SB records to multiple DOS files.

DOS.TLOAD sbfname FROM dosfile (options

(SBClient only.) Complementary process to DOS.TDUMP.

DRIVER.DOC

Generates documentation for input, output, transaction, and shell wrapper processes, based on the
screen driver record.

ECN

Allows you to enter the @number, and returns the corresponding COMMON variable name.

EE

Allows you to enter any expression, and executes the expression.

EEGC

Allows you to enter an expression, and shows the SB generated code.

EES

Shows the executable string of an expression.

General Processes

33

EET

Shows SB text generated for an expression.

EP

Allows you to enter any paragraph statement, and executes the paragraph statement.

EPGC

Allows you to enter a paragraph statement, and shows the SB generated code.

EPS

Allows you to enter the executable string of a paragraph statement.

EX

Allows you to enter an SB executable string, and executes the string.

EXGC

Allows you to enter an SB executable string, and shows the SB generated code.

GC & GCP

GC invokes the Generate Code process.

GCP uses the MP process to determine the process name (the highlighted menu option), and then
directly enters the GC process.

GENHELP

Calls the General Help menu (level 5 help).

GLOBAL.ENQ

Global enquiry tool for global files and dictionary. Review and print options available.

GOTO.FLDNO

Prompts for the input field number, and jumps to the field.

GOTO.MVLINE

Goes to specific multivalued line or page. This must be called from a controlling multivalued line. You
can enter the line number, page number (preceded by P), or contents of the controlling value to go to.

GUI.TEXT.EDIT

This converts a multivalued text field into a Memo field (multiline 'editclass' object) in GUI mode only.

Passing a parameter of 1 (GUI.TEXT.ED,1) prevents word-wrapping from creating new multivalues. For
example, only pressing Enter or Insert-Line creates a new multivalue. When the field is accepted, the
carriage returns caused by word-wrapping are not stored in RECORD.

Note: You must regenerate the driver for this to take effect in GUI mode.

Chapter 5: General processes

34

See also INVOKE.TEXT.ED, below.

IMAGE,dosfile,x,y

(SBClient only.) Shows image (stored in DOS file) on screen.

dosfile is the name of the file that stores the image. Include the full path name if necessary.

x is the start column pixel number in the range 0-320. If not specified, 0 is assumed.

y is the start row pixel number in the range 0-240. If not specified, 0 is assumed.

INVOKE.TEXT.ED

Invokes the text editor for a multivalued field. Place in screen as Process Before for relevant
multivalued controlling field.

KEYS

Displays current edit keys available.

LFK,id

Activates the function key/action bar definition with the name id. You can place this in a menu
definition to give function keys to a menu. You can enter the process name in any of the first three
slots in the F6-Additional Menu Definitions subscreen.

LOCK.KEYBRD

Locks the keyboard, which remains locked until a valid password is entered. A user of the same
security group or above can enter their user ID followed by a comma, followed by their own password
at the prompt. This process also allows you to change your user ID without logging off first.

LOCK.KEYBRD1

Locks the keyboard, which remains locked until a valid password is entered. This option first validates
the logon date and time criteria (see the “Security” section in the Administering SB/XA manual). If these
are valid, it prompts for the user’s password. After a password (or user ID, password) is entered, the
logon date and time are revalidated. If logon validation fails, the user is logged off. If the password
fails or the user’s group is incorrect, the process (keyboard) remains locked.

LOG.USER

Updates the file DMUSERLOG if the user has the log flag set (in user definition record). It records date
and time, current processes active, menu option, and path at the time the process is called.

MP

Modifies the process definition, the associated tool definition, or just the window coordinates. It works
best to call this process from a menu when the cursor is highlighting the menu option of the process to
be modified, or from within a prompt containing a process name (such as Process Before Execute).

This allows you to modify processes even if you do not know the name or type of the process, or to
bring up the relevant definition screen directly.

General Processes

35

MPC

This is an alternative call to MP. It invokes MP in character mode. MPC is designed to be used within a
GUI session.

MT

Creates a menu hierarchy and displays it in a lookup box. Menus in the lookup box can be selected and
executed.

MTREE

Creates and displays a menu (type 3) tree, showing the menu hierarchy starting from the nominated
menu. The default is the user start menu.

OA.MSG

Looks for a message flag for the current user ID. If found, it displays the abbreviation MSG on the
screen. This flag is cleared after the user has accessed the incoming message screen and pressed the
F2 key.

OH

Allows you to write online help for inputs from an input process and also from menus. You can also
maintain second- and third-level help for processes and menus.

OH1

Allows you to maintain field definition online help reminders. You can also maintain second- and third-
level help linked to field definitions.

P

Dumps the screen to the printer (or to the PRINTER file, if one exists).

P?

Allows selection of user processes held in file xxPROCESS.

PDOC

Allows documentation to be entered for a process. This documentation can then be used within
generated user manuals.

PREVIEW.SEL

If called from a selection process as Process After, displays selected records in a window, where you
can resequence them or make further selections.

PRINT.LETTER,id

Prints a letter created by the /HL process. If id is not given, you are prompted for an ID. Note that at
prompt, the intuitive help key lists available IDs to print.

Chapter 5: General processes

36

PT

Displays a list of processes as a hierarchy of menus, for selection.

PTREE

Creates and displays a type 3 menu tree of all processes called from menus in the menu hierarchy. This
allows you to inspect the names of called processes.

You can select and execute a process or menu.

Use PT process to see all processes, as menus may get too large.

PX

Dumps a screen to the auxiliary printer (or file PRINTER if one exists).

R

Refreshes entire screen (not just current process screen). This has no effect in GUI mode.

R,n

Refreshes n levels back, where 0 is the current level:

R,0 refreshes current level only.

R,2 Refreshes current level and two previous levels.

If n is a negative number, the COMMON variable REFRESH is set to the absolute value of n, and the
screen is refreshed accordingly.

REGEN.GDS

Allows nomination of a GUI defaults set (GDS) record, and then applies the user preferences in that
record to an existing .GUI form record without otherwise rebuilding the form definition. This process
differs from REGEN.GUI in two ways:

▪ REGEN.GUI does not allow nomination of another GDS record on the fly.
▪ REGEN.GUI always rebuilds the .GUI form record from the character screen definition items

screenname and screenname.TXT in the screen's file dictionary.

REGEN.GUI

Builds a default GUI form definition item from an existing character screen definition item.

REGEN.XUI

Builds a default XUI form definition item from an existing character or GUI screen definition item,
depending on the Link Char and GUI Field Positions flag.

RESEQ.MVLINE

Resequences multivalued lines.

To be called from the controlling multivalued line. Asks for a new position and moves the current line
to the new position.

General Processes

37

S

Allows you to enter a selection criteria and/or sort fields and produces an active select list. Selected
IDs can optionally be displayed in a window for further selection.

This process can be called from key fields in maintenance screens.

SB.EQU

Display list of names equated to expressions used by SB/XA Application Server. As with User equates
(EXP.EQU), symbolic/mnemonic names can be used in expressions to make them more readable.
Whenever SB/XA Application Server compiles an expression, it will search this list of equates after User
equates and field names. The names in this list are used mainly with paragraph functions GETATTR
and SETATTR.

SBLIST

A replacement for the OE LIST command. This process allows you to specify SB field definitions in the
Query statement that follows the SBLIST command. You can use this process at the SB shell prompt,
or within the QUERY Report tool.

SBSORT

A replacement for the OE SORT command. This process is similar to the SBLIST process, except that a
sort is always performed.

SD

Screen Definition tool. In GUI mode, this process invokes the form painter.

SDC

Alternative call to SD. Always invokes SD (the Screen Definition tool) in character mode, even within a
GUI session.

SE

Calls the full-screen editor. This is available as a process or as a shell command. You can optionally
specify filename id (separated by spaces) after the SE.

SORT.MVLINE

Sorts multivalued set by controlling field.

Sort is left-justified if it is an alpha field; otherwise it is right-justified.

SYS,newsysid, Supr

Swaps COMMON to newsysid in the same account if security allows the user to access the nominated
newsysid. If access is denied, RTN.FLAG is set.

The newsysid parameter can be any of the following:

null or 0 System menu is called for selection.
1 The sysid is reset to last valid value not set by this process.
2 The sysid is reset to the last valid value set by this process.
newsysid After validation, COMMON is initialized for this sysid.

Chapter 5: General processes

38

(expression) expression is evaluated and validated, and if a valid sysid, COMMON is
initialized for this new sysid.

In GUI mode, Supr allows the automatic re-display of the System Heading to be suppressed. It also
allows updating of SBX Tree and GUI-Click Menu to be suppressed:

null or 0 Heading is updated as normal.
1 Heading is not updated.
2 SBX Tree is not updated.
3 Right-Click Menu is not updated.
4 No menus are updated. Main Window Headings are not updated. No

HK.CONTROL settings are implemented.

T?

Allows you to select tool processes held in file DMPROCESS.

TODO

Maintains a user to do list without displaying appointments. For other ways and reasons to use this
process, see item in `DMHELPTEXT,'DIARY.INTERFACE'~.

TOF

Sends a Top of Form sequence to the printer.

UCR

User Classes Registration. See ActiveX Controls in the General Help → Technical Help → GUI
Features menu.

UK

Allows you to view and edit your user macro keys.

VU

Allows you to verify or change a user ID. To change a user ID, enter the new user ID and password,
separated by a comma. You cannot escape from this prompt, and after three unsuccessful attempts
you are logged off. Changing your user ID provides new security and privileges.

WIN.POS,n

A dynamic window position process that modifies window coordinates in VALUE to position the
window below the last-selected menu option. Parameter n is column offset relative to column position
of the last-selected menu option. This allows you to use the process slot in Additional Menu Definitions
to change coordinates.

XP

Displays a hierarchical tree of all processes called from a nominated process. You can explode any or
all of the displayed processes, if possible.

If you want to start from a menu that does not have a process set up for it, specify the process ID as
M:id, where id is the menu name. For example: M:SBMENU

Function keys

39

XP output can be redirected. The options are Screen, Printer, Auxiliary Printer, and List. The
List option creates a list of the process IDs found in the exploded process. Enter L at the Output
Redirection prompt. The list is written to the xxCONTROL file with a key of $TREE.port. You can use
this list in QSELECT processes or user processes.

You can also create a list of specific processes by toggling them from within the XP display. Press the
F2 key to create two lists in xxCONTROL:

▪ $TREE.PORT: multi-attributed list of specified processes.
▪ $TREE.DET.PORT: multivalued list of processes, and other data. Positions are:

1 Process ID
2 Type
3 Description
4 Filename

B:SH.LOGTO,account\ password,sysid,menuname,selectletter,selectletter

Logs to another account (with optional \password), entering nominated sysid, start menu, and other
selections. This B: call prevents the Logto screen from being displayed.

//

Use the // process to reload the SB environment after you edit BASIC code. After you edit a BASIC
program in SB, the program will not run with your desired changes until SB is reloaded. In any of the
clients, enter / to call the Process Id prompt. Then enter / as the process, and press Enter. This reloads
the SB environment and allows you to run the program you just edited.

In SBClient, you also can accomplish this by entering 0 to exit SB and drop to the command line
interface and then entering MM to return to SB and reload the environment. The 0 > MM process does
not work in the XUI clients, however, because the 0 command is not supported. Without the // process
in SB/XA, developers need to log out of SB/XA and log in again to run a newly edited program.

The // process can be disabled by the system provider or administrator with a flag on the SB Control
Parameters screen (Admin → SB+ Setup → SB+ Control Parameters). For more information, see
Administering SB/XA.

Function keys
F2 COMMON is updated with any changes made.
F5 RECORD is reformatted and displayed for editing.
F6 ORIG.REC is reformatted and displayed for editing.
F7 WORK is reformatted and displayed for editing.
F8 PARMS() is reformatted and displayed for editing.
F9 USERDATA() is reformatted and displayed for editing.

Chapter 5: General processes

40

F10 Displays the action bar:

▪ OTHER() – Is reformatted and displayed for editing.
▪ SBPARM() – Is reformatted and displayed for editing.
▪ OUTVAL – Is reformatted and displayed for editing.
▪ OV.FLAGS – Is reformatted and displayed for editing.
▪ OUTVAL.FLAGS – Is reformatted and displayed for editing.
▪ OTHER.REC – Is reformatted and displayed for editing.
▪ PASS.DEFN() – Is reformatted for display. You cannot edit this COMMON variable.

Although you can modify some of the following fields, doing so may affect the state of your application
or SB/XA Application Server unpredictably. Take care when using this tool.

Key

The value of KEY; usually the key of the current record. Modifiable.

Line

The value of the LINE COMMON variable. You can modify this value either in this field in the format
displayed, or in a screen displayed by pressing the intuitive help key. The Driver Line subscreen lays
out the driver components for easy identification and amendment.

Action

The current ACTION number. Modifiable.

MainFile

The file name currently open to the F.FILE COMMON variable. You can change this file name. Note that
the file opened to F.FILE is not changed.

Box.Coords

The current window coordinates for a screen or report, if specified. You can modify these coordinates.
The F3 Box Cords subscreen allows you to enter formatted coordinates.

F.Indx.Defns

The index file definition for the file currently open to the F.INDX COMMON variable. Modifiable.

Cnt

The value number within the multivalued field where the cursor is currently positioned. Modifiable.

GUI

The current value of the GUI flag, used to indicate whether SB/XA Application Server is in GUI mode.
Modifiable.

Logical Fname

The current logical file name. Display only.

Function keys

41

Value

The current value of VALUE. Modifiable.

Param

The current value of PARAM. Modifiable.

Rtn.Flag

The current value of RTN.FLAG. Modifiable.

Refresh

The current value of REFRESH. Modifiable.

Menu.Opt

The number of the currently selected menu option. Modifiable.

Level.No

The current level number of stacked screens. Modifiable.

Proc.Name

A multivalued field that displays the processes that are currently active. You can browse this field, but
you cannot change it.

Files.Opened

A multivalued field that displays the files that are currently open. You can browse this field, but you
cannot change it.

Acnt.Name

The account name. Display only.

Port

The port or device number. Display only.

Sysid

The system ID. Display only.

User.ID

The user ID. Display only.

Pcterm

The current PC terminal emulation mode, if present. Modifiable.

42

Chapter 6: General subroutines
This chapter provides details on general SB subroutines that can be called from subroutines linked to
SB. You can use them where applicable to provide a standard interface to the end user.

SB.CALL.METHOD
This subroutine enables you to call a method in the XUI clients.

Syntax

SB.CALL.METHOD(RESERVED, OBJECT_NAME, METHOD_NAME, PARAMETERS, RETVAL, STATUS,
STATUSDESC)

Passed

Parameter Description

RESERVED The first parameter is RESERVED for future use.
OBJECT_NAME The handle to the client object, which is either the SBObjectHandle or

SBObjectName.
METHOD_NAME The name of the method.
PARAMETERS An @VM delimited list of parameters.

Returned

Value Description

RETVAL Data returned from the method call.
STATUS Indicates whether the method call was successful: 0: Yes; 1: No
STATUSDESC If the call fails, any error information can be found here.

SB.CALL.STATIC.METHOD
This subroutine enables you to call a static method in the XUI clients.

Syntax

SB.CALL.STATIC.METHOD(RESERVED, ASSEMBLY_NAME, TYPE, METHOD_NAME, PARAMETERS, RETVAL,
STATUS, STATUSDESC)

Passed

Parameter Description

RESERVED The first parameter is RESERVED for future use.
ASSEMBLY_NAME The name of the assembly definition.
TYPE The full name of the .NET type that contains the static method.
METHOD_NAME The name of the static method.

SB.DATECONV

43

Parameter Description

PARAMETERS An @VM-delimited list of parameters.

Returned

Value Description

RETVAL Data returned from the method call.
STATUS Indicates whether the call was successful. 0: Yes; 1: No.
STATUSDESC If the call fails, any error information can be found here.

SB.DATECONV
Date validation and conversion from ddmmyy/mmddyy to internal format and vice versa.

Syntax

SB.DATECONV (MODE,DATE,ERR)

Passed

Parameter Description

Valid modes
1 Check date and convert to internal format.

MODE

2 Convert from internal format to ddmmyy/mmddyy.
DATE Date in format ddmmyy/mmddyy or internal format.

Returned

Value Description

DATE DATE is returned if MODE is 1 (Date in internal format) or 2 (Date in format ddm-
myy/mmddyy).

ERR ERR may be 1 (Valid date (MODE = 1) or 2 (Invalid date (MODE = 1).

Notes

You can enter the date in any of the following formats:

▪ ddmmyy or mmddyy
▪ dd/mm/yy or mm/dd/yy
▪ ddmm or mmdd (current year is assumed)
▪ dd or d (current month and year are assumed)
▪ T (today’s date)
▪ +n (today + n days)
▪ –n (today –n days)

SB.DISP
Display routines.

Chapter 6: General subroutines

44

Syntax

SB.DISP (TYPE,STRING)

Passed

Parameter Description

Type may be any of the following:
1 Clears the screen and displays STRING as the heading.
2 Clears the screen and displays 'SYSTEM NOW' and STRING in

the middle of the screen.
3 Displays STRING as an error message on the error line and waits

for the Enter key.
4 Dialog box. A dialog box can be invoked in two ways. If STRING

contains a \ character and the text preceding the first \ contains
a space character, the dialog definition is wholly contained in
STRING. If not, STRING is a reference to a dialog definition name,
possibly the file name in which this definition resides. STRING
syntax variations are listed in this section.

5 Reserved.
6 Reserved.
7 As for 3, but does not wait for the Enter key.
8 Clears screen from line 18 and displays message.

TYPE

9 Displays message on prompt line.
STRING Message text or heading.

STRING syntax variations
▪ name [\ filename]

where filename can be an expression.
▪ filename, name

where filename cannot be an expression.
▪ dialogtext\optiontext[,optiontext]\action[,action]\formatoptions\windowcoords\helptext\colors\

processbefore\processafter
where dialogtext must contain at least one space.

Notes

STRING may be [Un] to reference message held in xxCONTROL, MESSAGE attribute n, or [Ufilename,
id<amc>] for message in attribute amc of record id in file filename.

SB.DISP.BOXTEXT
Displays text in window.

Syntax

SB.DISP.BOXTEXT (TEXT,F.TEXT, OPTIONS)

SB.EVAL.EXP

45

Passed

Parameter Description

TEXT Text or text ID (if one word).
F.TEXT File variable on which the text file opened (if ID passed).

Options are as follows:
N No refresh action.
I Waits for input at end, then refresh.

OPTIONS

P Waits for input at end, no refresh action.

SB.EVAL.EXP
Evaluates SB executable string. This can be used to execute the executable string produced by
SB.STACK.EXP.

Syntax

SB.EVAL.EXP (EXE.STRING)

Passed

Parameter Description

EXE.STRING SB executable string.

Notes

Result of expression returned in the COMMON variable VALUE.

SB.EXECUTE
SB/XA Application Server uses this subroutine to execute verbs and to create and clear ‘select’
variables (handles).

Syntax

SB.EXECUTE (VERB, TYPE, OPTS, DTA, F.VAR, CAPT, ERNO, SELVAR, ITEMCNT)

Passed

Parameter Description

VERB Verb to be executed.
TYPE See the Type table in this section for options.

Options are as follows:
D Execute VERB after DATA.
C Execute VERB capturing CAPT.
E Execute VERB returning ERNO.
DTA Data for DATA statement (delimited by AM).

OPTS

F.VAR File to select (type 51).

Chapter 6: General subroutines

46

Table 6: Type

Type Description

1 Standard execute (EXECUTE VERB)
2 TERM params
3 TERM term.type
4 CREATE-FILE verb
5 DELETE-FILE verb
6 SELECT verb returning ITEMCNT leaving SYSTEM(11) active
7 Execute VERB - preserving DATA stack
10 Execute VERB - preserving 'named' COMMON.
50 SELECT TO SELVAR
51 SELECT F.VAR TO SELVAR
52 Execute VERB (if VERB > '') and IF SYSTEM(11) THEN SELECT TO SELVAR
53 Execute VERB (if VERB > '') and IF SYSTEM(11) THEN SELECT TO SELVAR ELSE SELVAR

= ''
54 SELVAR = ''
59 Execute VERB - preserving 'named' COMMON and IF SYSTEM(11) THEN SELECT TO

SELVAR

Returned

Parameter Description

CAPT Captured output of verb
ERNO Error number
SELVAR Select variable
ITEMCNT Number of items selected; returned for types 6, 52, and 53

Notes

Types 10 and 59 are used when SB COMMON should not be changed by the VERB to be executed. If you
are using a release of SB/XA Application Server that supports ‘named’ COMMON, then SB COMMON
is carried forward and returned from the VERB executed. So, if the VERB modifies COMMON or calls
SB.SET.COMMON, then SB COMMON may not contain the correct data. However, if you use type 10 or
59, SB COMMON is saved before the VERB is executed and it is restored afterwards.

SB.FILEVAR.S
This subroutine is used to open and close files, and to maintain the lists of open file names and
associated file handles. It provides additional error handling options and a logical close operation not
supported by the SB.OPEN.FILE function.

Syntax

SB.FILEVAR.S (FNAME, MODE, F.VAR, ERR)

SB.INPUT

47

Passed

Parameter Description

FNAME The filename to open or close.
Mode options are as follows:
-1 Clear file handle secondary cache.
0 Open file, report any error.
1 Open file, do not report error.
2 Close file defined by FNAME.
3 Force file open. Report any error.
4 Force file open. Do not report any error.

MODE

5 Invalidate cache entry for passed filename.

Note: A forced open means that any existing handle for the file is ignored. The file is effectively
closed and then opened. This is useful for opening remote file pointer items.

Returned

Parameter Description

F.VAR Variable that the file opened on, if MODE = 0, 1, 3, 4.
ERR values may be as follows:
0 File operation successful.

ERR

1 File operation failed.

Notes

This subroutine requires you to consider the implications of logical file opens on the application. For
example, consider the following sequence of events:

A program is written to process a list of files. For each file name in a list, it creates a remote file pointer
(Q-Pointer) called QFILE, writes it to the VOC, and calls SB.FILEVAR.S to open the file. The file handle is
returned, and the name QFILE is stored in the cache of open file names.

This can cause a problem: If SB.FILEVAR.S is called using mode 0 or 1, each call after the first call
returns the file handle of the first file, because the same file name is used for different files. In this type
of situation, the file handle cache should not be searched when requesting a file open action. Use of
mode 3 or 4 would give the desired result.

The conclusion drawn from this example is that applications should not reuse file names, unless the
files are opened using mode 3 or 4.

SB.INPUT
Input routine. Accepts data from keyboard.

Syntax

SB.INPUT (COL,ROW,LENGTH,TYPE,PROMPT,HELPMESS,INPVAL,ESC)

Chapter 6: General subroutines

48

Passed

Parameter Description

COL Column input prompt to start at (0-79).
ROW The row input prompt at which to start (0-23). If 0, the system prompt row is

used. If greater than 0, the actual row is used.
LENGTH Maximum length of input. If negative, an automatic <CR> is inserted when the

absolute value of length is reached.
Type may be as follows:
-1 Enables only edit keys that do not affect data value. “@nn” is

treated as an edit key.
0 Alphanumeric entry. “@nn” is treated as an edit key.
1 Entry must be numeric. “@nn” is treated as an edit key.
2 “@nn” is treated as an edit key.
3 “@nn” is treated as an edit key.
11 Enables only edit keys that do not affect data value. “@nn” is

treated as a literal value.
12 Alphanumeric entry. “@nn” is treated as a literal value.
13 Entry must be numeric. “@nn” is treated as a literal value.
14 “@nn” is treated as a literal value.

TYPE

15 “@nn” is treated as an edit key.
PROMPT Prompt string (optional).
HELPMESS Help message code [intuitivehelp process.
INPVAL Value to be used as default. If no default, the value must be set to null before

CALL.

Returned

Parameter Description

INPVAL Value entered.
ESC may be as follows:
1 The Esc key or special edit key pressed.
0 Regular input.

ESC

Note: If you press an edit key that the input routine does not use, the ESC flag
is set to 1, and if using character mode, the edit key number is returned in OTH-
ER(18).

SB.OPEN.FILE
The SB.OPEN.FILE subroutine opens a file if not already opened. This subroutine has been superseded
by SB.FILEVAR.S, which provides additional options, including a logical close, support for forced
opens, and additional error handling. SB.FILEVAR.S is now the recommended subroutine for opening
(and closing) files. SB.OPEN.FILE remains available for backward compatibility.

SB.PRESERVE.COM

49

Syntax

SB.OPEN.FILE (FNAME,F.VAR,ERR)

Passed

Parameter Description

FNAME Filename to open.

Returned

Value Description

F.VAR Variable file opened to.
ERR may be as follows:
0 File successfully opened.

ERR

1 File not opened.

Notes

FILES.OPENED contains a multi-attributed list of files opened.

FILEVAR(n) contains the corresponding file variables.

If you modify the variables FILES.OPENED or FILEVAR(n), you must make sure that they do not get out of
synchronization.

SB.PRESERVE.COM
Preserves/reinstates first 52 COMMON variables.

Syntax

SB.PRESERVE.COM (FLAG,MAT CURR.VARS)

Passed

Parameter Description

FLAG may be as follows:
0 Preserves.
1 Reinstates all.
2 Reinstates all except first four.

FLAG

3 Reinstates all screen variables (11-18).
MAT CURR.VARS Array of 52 variables saved previously (FLAG > 0).

Returned

Value Description

MAT CURR.VARS Dimensioned array containing the 52 variables from section 1 of COMMON
storage (Flag = 0), or the reinstated COMMON variables (Flag = 1).

Chapter 6: General subroutines

50

SB.PRESERVE.DATA
Preserves and reinstates records on secondary file.

Parameters are passed in the COMMON variable PARAM.

PARAM = mode, secfname, keyamc

PARAM element Description

mode may be as follows:
0 Preserves original records (in xxWORK).
1 Reinstates all original records (regardless of whether they have

changed).

mode

2 Reinstates only records that have changed.
sec.fname Name of secondary file being updated.
key.amc Attribute position in RECORD containing keys to secondary file.

SB.PRINT.BOX
Syntax

SB.PRINT.BOX (COL,ROW,LENGTH,DEPTH,EFFECT)

Passed

Parameter Description

COL Column of upper-left corner.
ROW Row of upper-left corner.
LENGTH Length of box.
DEPTH Depth of box (number of lines).

EFFECT may be as follows:
AMC 1 Flag indicating whether the box is being displayed with reverse

video on; the box must be painted with space characters. @(–3)
cannot be used.

AMC 2 Box frame (0 : none, 1 : single line, 2 : double line).

EFFECT

AMC 3 Box style (0 : plain, 1 : shadow, 2 : explode, 3 : shadow and ex-
plode).

Notes

Box headings are not specified using this routine. To print a box with a heading, you must supply a
special code. For example:

HEAD = "Heading text"
CALL SB.PRINT.BOX(COL,ROW,LENGTH,DEPTH,EFFECT) ;
Z = INT((LENGTH – LEN(HEAD))/2
CRT @(COL+Z,ROW) : HEAD:

SB.PROCESS

51

SB.PROCESS
Execute process.

Syntax

SB.PROCESS (PROCNAME)

Passed

Parameter Description

PROCNAME Process name or proctype: executable.string.

SB.READ.BTREE
Reads B-tree index file and returns item IDs of requested records.

Syntax

SB.READ.BTREE
(MODE,F.INDEX,INDEX.POS,INDEX.VAL,MAX.IDS,ITEMID,MORE.FLAG,MAX.WIDTH,S.MODE,F.DATA)

Passed

Parameter Description

MODE may be as follows:
0 Finds key and then reads next to MAX.IDS or end of tree.
1 Reads next to MAX.IDS or end of tree.
2 Reads previous to MAX.IDS or end of tree.

MODE

3 Finds key and then reads previous to MAX.IDS or end of tree.
F.INDEX File variable on which the index file opened.
INDEX.POS Indexed key number (the relative position of the secondary key to be used

within the cross-reference definition in the file dictionary).
INDEX.VAL Value of key to find (only if MODE = 0 or 3).
MAX.IDS Maximum number of IDs to return.
MAX.WIDTH If not zero, then the length of the key is tested.
S.MODE Search mode filtering criteria (can be null). Use null in applications.
F.DATA Data file variable for S.MODE tests. Use null in applications. (Do not use F.FILE.)

Returned

Parameter Description

INDEX.VAL The index key value. If MODE = 0 and the key is not found, this parameter re-
turns the nearest key.

ITEMID The item ID of the associated record in the data file. Multivalued if MAX.IDS > 1,
where item IDs are in attribute 1 and index values are in attribute 2.

MORE.FLAG Set to 1 if end of tree not encountered.

Chapter 6: General subroutines

52

Parameter Description

MAX.WIDTH If initially not zero and the length of any key returned exceeds initial value, this
contains maximum key length encountered.

MAX.WIDTH,
S.MODE, F.DATA

The last three parameters are for use by SB selection processes, and should be
defined respectively as 0, null, null in applications.

Notes

This subroutine must be called with MODE = 0 or MODE = 3 to initialize a position within the index
before relative calls using MODE = 1 or MODE = 2 can be made.

After the current position within the index is established using MODE = 0 or MODE = 3, multiple calls
with MODE = 1 or MODE = 2 can be made.

SB.REPLACE
Replaces characters in a string.

Syntax

SB.REPLACE (OLD,NEW,STRING)

Passed

Parameter Description

OLD Old characters to be replaced.
NEW New characters.
STRING String in which characters are to be replaced.

Returned

Parameter Description

STRING Updated string.

SB.SET.COMMON
Sets up certain COMMON variables.

Syntax

SB.SET.COMMON

Notes

All COMMON variables in section 1 are initialized to null, and variables in sections 2 and 3 are assigned
the appropriate values. (For more information, see COMMON variables, on page 13.)

SB.STACK.EXP
Validates and creates SB executable string from expression.

SB.STACK.SCREEN

53

Syntax

SB.STACK.EXP (EXPRESS,F.DICT,EXE.STRING,ERR)

Passed

Parameter Description

EXPRESS Standard SB expression.
F.DICT File variable that dictionary file opened on. Used if referencing field names in

expression; if no fields are used, pass it F.MD.

Returned

Parameter Description

EXE.STRING Executable string.
ERR may be as follows:
0 Valid expression.

ERR

1 Invalid expression.

SB.STACK.SCREEN
Pushes the current screen image on disk stack or pops the image from the stack and displays it.

Syntax

SB.STACK.SCREEN (FLAG,BOXCORDS,NOSTACK)

Passed

Parameter Description

FLAG may be as follows:
0 Push.

FLAG

1 Pop.
BOXCORDS Coordinates of the box to be displayed when FLAG = 0. Coordinates of current

box when FLAG = 1. If full screen, then BOXCORDS = null.
NOSTACK Push null image and no pop action

Notes

This subroutine updates the COMMON variables LEVEL.NO and BOX.CORDS.

SB.TEXT.EDITOR
Full screen/window text editor.

Syntax

SB.TEXT.EDITOR (TYPE,F.TEXT,TEXT.ID,ESC)

Chapter 6: General subroutines

54

Passed

Parameter Description

TYPE may be as follows:
H Help text (window coordinates in attribute 1 of text).
F Full-page help.
L Letter text.
W Multivalued string (window coordinates in TEXT.ID).

TYPE

NULL General text item (no limit to line length).
F.TEXT File variable on which the text file opened.
TEXT.ID Item ID of text/help item (except type W).

Returned

The Esc key has been pressed (no update).

Notes

If TYPE is W, multivalued field is passed and returned in the COMMON variable VALUE.

SB.UPDATE.BTREE
Updates B-tree.

Syntax

SB.UPDATE.BTREE (BTREE.DEFN,F.INDEX)

Passed

Parameter Description

BTREE.DEFN B-tree parameters.
1 List of amc.vmc key field positions.
2 Corresponding list of derived values, if applicable.
3 Corresponding list of flags to ignore null values.
4 List of flags to index on words.
5 List of input conversions (such as MCV).
6 Minimum word size for use with ‘word’ indexes.
7 List of words (subvalue delimited) to exclude from a ‘word’ index.

AMC(each value
multivalued):

8 List of index justification codes. Null = left-justified.
F.INDEX File variable on which the index file opened.

Notes

This routine assumes the current record is in RECORD, the ID in KEY, and the original version of the
record is in ORIG.REC. Also that ACTION contains 1/2/3 (Insert/Amend/Delete).

SH.SEC.API

55

SH.SEC.API
Enables you to access and manage SB/XA security records outside of the SB/XA user interface, using
BASIC programs.

Syntax

SH.SEC.API

Passed

Parameter Description

MODE For MODE options, see the MODE Options table in this section.
VALUE The key to the user security record that is to be created, amended, deleted, or

queried.
RECORD The contents of the user or group security record that is to be created,

amended, deleted, or queried.
KEY The key to the group security record that is to be created, amended, deleted, or

queried.

Table 7: MODE Options

MODE
option

Description

1 Creates user record.
2 Amends user record.
3 Deletes user record.
4–10 Reserved.
11 Creates group record.
12 Amends group record.
13 Deletes group record.
14 Reserved.
15 Retrieves all restricted account access for a group.
16 Retrieves all unrestricted account access for a group.
17 Retrieves allowed processes.
18 Retrieves disallowed processes.
19 Retrieves allowed menu options.
20 Retrieves disallowed menu options.
21 Creates allowed/disallowed processes and menu options.
22 Amends allowed/disallowed processes and menu options.
23 Reserved.
24 Creates allowed systems record.
25 Amends allowed systems record.
26 Reserved.

Chapter 6: General subroutines

56

Returned

Parameter Description

RTN.FLAG may be as follows:
0 Success.

RTN.FLAG

1 Failure.
ORIG.REC The security record as it was before the change.
VALUE Query options 15 - 20 return the value in the security record(s).

SH.VERIFY.USER
Enables you to access and manage SB/XA security outside of the security screens, using BASIC
programs. Prompts for and verifies re-entry of user’s password.

Syntax

SH.VERIFY.USER

Notes

The action to be taken is defined in the COMMON variable PARAM as follows:

PARAM option Description

0 Logs user off for invalid password entry or for pressing the Esc key.
1 Does not log user off; user must enter valid password.
2 As for Option 1, but first verifies logon date/time criteria.
3 Verifies only if logon date/time not breached; if error, logs off.
4 As for Option 3, but if error, sets RTN.FLAG instead of logging off.
5 As for Option 0, but allows Esc back if pressed within three tries.

UT.GUI.TREE
This subroutine displays a user-defined tree structure in GUI mode only.

Syntax

UT.GUI.TREE (TREE, MODE)

UT.QPNTR

57

Passed

Parameter Description

A dynamic array containing the tree details, with attributes as follows:
1 Heading
2 Root ID (root node ID, ROOT)
3 Root Desc
4 Ids (each node must have a unique ID)
5 Parent IDs (as specified in 2 or 4)
6 Descs

TREE

7 Reserved
MODE options are as follows:
1 Reserved.

MODE

2 Display a User Tree.

Returned

PARAM: Selected Node. Attributes are:

1. Node number (zero for Root)
2. Node ID

UT.QPNTR
Process to create a valid Qpointer to a given account and file.

Syntax

UT.QPNTR (ACCNAME,FNAME,QNAME,OPTIONS,F.PTR,ERR)

Passed

Parameter Description

ACCNAME Account name or path in VOC.
FNAME Can be null for master VOC.
QNAME Name of file pointer written in VOC.

Chapter 6: General subroutines

58

Parameter Description

OPTIONS are as follows:
D Deletes QNAME item in VOC.
A Opens data level to F.PTR.
I Opens dictionary level to F.PTR.
L Allows the pointer to have a local account name.
M Maps path to ACCNAME (and filename to FNAME).
P Path is given in place of account name in account variable.
R Returns the Qpointer record in QNAME (to write to remote VOC).
S Suppresses error message displays.
B Builds the QPNTR and leaves it in VOC.
O Opens either the data or the dictionary level, as per A or I. This is

used in conjunction with the R option.

OPTIONS

NULL As for B, except deletes if an error occurs. In all instances except B,
the existence of an error is sufficient reason for the pointer named
in QNAME to be deleted from VOC.

Returned

Parameter Description

F.PTR The file variable of the dictionary or data level of the file opened to via options
A or I and O.
ERR status may be as follows:
0 Okay.

ERR

1 Error.

Notes

This subroutine handles synonym account names and resolves them into true account names. This
routine also resolves Qpointer to Qpointer redirections with endless loop trapping, especially on
platforms that do not support nested Qpointer redirection. This routine also resolves local and remote
paths on platforms that use directory tree file path structures.

59

Chapter 7: Special report variables in report
definitions

This chapter describes the report variables used in report definitions.

Report Variables
Table 8: Report Variables

Description AMC Position in Report Definition

Current break count 1 – @RV.BREAK
Current print line count within page 2 – @RV.LINE
Current page number of report 3 – @RV.PAGE
Total breaks counted 4 – @RV.BREAK.CNT
Footing start line or lines per page 5 – @RV.FOOT.LINE
Current page count per break 6 – @RV.PAGE.CNT
Start time (internal format) 7 – @RV.START.TIME
End time 8 – @RV.END.TIME
Current record count 9 – @RV.RECORD
Total records counted 10 – @RV.RECORD.CNT
Records counted per current break 11 – @RV.BREAK.RECORD
Current multivalued page number 12 – @RV.MV.PAGE
Total multivalued pages (one record per) 13 – @RV.MV.PAGE.CNT
Break count activated 14 – @RV.BREAK.FLD
Output device (S/P/X/D/F /H/A/O[/B]) 15 – @RV.OUT.DEVICE
Select criteria 16 – @RV.CRITERIA
Loading labels 17 – @RV.LOADING
Printing section (D,B,G) 18 – @RV.SECTION

@RV variables can be referenced within the Report Writer only. You can reference the same
information by referring to @OTHER(8)<pos>.

pos is the variable’s position within @OTHER(8), as defined by AMC Position in the preceding table.

For example, @RV.BREAK.CNT is the same as @OTHER(8)<4>.

The key to the record in @ORIG.REC is stored in @SBPARM(17). This allows derived fields that need
a key value to be evaluated from @ORIG.REC. When using F3 intuitive help to build an expression at
the Derived Value prompt, the Report Variables option in the Expression Elements menu allows you
to enter an @RV format variable as an expression element. Selecting this option displays the Report
Variable subscreen. Pressing the F3 key at the Report Variable prompt displays the available @RV
variables.

60

Chapter 8: Stamp attributes in revision control
This chapter describes stamp attributes in revision control.

Stamp Attributes
Table 9: Stamp Attributes

Definition Process Stamp
Attribute

Extra Details
Attribute

Process ID

PD (Process) 14 15 PD.LOG
FC (File Create/Delete) 8.M 9.M FC.LOG
FD (Field) 24 25 FD.LOG
FD.XREF (Cross Ref) 11 12 FD.XREF.LOG
SD (Screen) 43 44 SD.LOG
MD (Menu) 18 19 MD.LOG
RD (Report) 39 40 RD.LOG
QRD (Access) 21 22 QRD.LOG
TD (Transaction) 21 22 TD.LOG
PUD (Periodic Update) 21 22 PUD.LOG
GD (Graph) 21 22 GD.LOG
JSD (Job Schedule) 21 21 JSD.LOG
TABLE.DEFN (Code Table) 9 10 TABLE.DEFN.LOG
DIALOG.DEFN (Dialog Box) 9 10 DIALOG.DEFN.LOG
FIR.DEFN (Field Input
Restriction)

9 10 FIR.DEFN.LOG

FNKEY.DEFN (Function Key) 13 14 FNKEY.DEFN.LOG
SPREAD.DEFN
(Spreadsheet)

21 22 SPREAD.DEFN.LOG

MATRIX DEFN 21 22 MATRIX.DEFN.LOG
BBD (Button Bar) 18 19 BBD.LOG
LF (Logical File) 8 9 LF.LOG
EQU.EXP (Equated
Expression)

9 10 EQU.EXP.LOG

61

Chapter 9: Log file (OTHER.REC) layout in job
scheduling

This chapter describes the layout of the log file used in job scheduling.

Log file layout
Table 10: Log File Layout

Attribute Description Notes

0 (key) User defined Uses ‘Schedule name * Date’ if null.
1 Type code Set to JL.
2 Schedule name Name of schedule.
3 Schedule

description
Description of schedule at time of running.

4 Schedule started Time and date schedule started.
5 Schedule finished Time and date schedule finished.
6 Schedule message The schedule message.
7.M Job name Process name (C).
8.M Job description Description of job at time of running (D).
9.M Job started Time and date job started (D).
10.M Job finished Time and date job finished (D).
11.M Job message The job message (D).

(C) Controlling multivalued

(D) Dependent multivalued

62

Chapter 10: Screen refresh procedure
This chapter describes the screen refresh procedure used by SB/XA Application Server.

Screen refresh procedure
The current screen display is always held in the following COMMON variables:

COMMON variable Description

HEAD Screen/window heading.
SCR.IMAGE String of text characters with embedded cursor addresses.
STATUS.LINE The status line display with embedded cursor addresses.

Coordinates of current window (or null if full screen display), multivalued as
follows:
Attribute Description
1 Base column.
2 Base row.
3 Length.

BOX.COORDS

4 Depth.
OUTVAL Data value of each field in screen with embedded cursor addresses.
OUTVAL.FLAGS Flag information for each field (attribute) in OUTVAL.

Notes
Any user-written subroutine that displays information on the screen needs to comply with certain
rules so that screen refreshing is performed properly.

There are three scenarios:

▪ If the user-written subroutine is to display data on the screen and make calls to SB.INPUT or allow
another process to be called from it, the subroutine should preserve the current screen at the
beginning and then use the variables in this section for its screen display. At the end, it needs to
reinstate the screen as originally found. The following skeleton subroutine that is written in Data/
BASIC shows how to do this:

SUBROUTINE XXXXXX
INCLUDE DMSKELCODE COMMON
EQU PUSH TO 0, POP TO 1
DIM COMVARS(52)
*
*Set coordinates of window that this subroutine uses
*If full screen display, then set to NULL
BOXCORDS = 20 : VM : 5 : VM : 50 : VM : 10
*
CALL SB.PRESERVE.COM(PUSH,MAT COMVARS)
* preserve current common
CALL SB.STACK.SCREEN(PUSH,BOXCORDS,0)
* push current screen on stack
*
* User code to display screen
HEAD = 'xxxxxxxxxxxxxxxxxxxxxxx'
CALL SB.PRINT.BOX(20,5,50,10,0)

Notes

63

* or CALL SB.DISP(1,HEAD)
* SCR.IMAGE = '.......' ; CRT SCR.IMAGE:
*...........................
* at end restore common and screen
CALL SB.PRESERVE.COM(POP,MAT COMVARS)
CALL SB.STACK.SCREEN(POP,BOXCORDS,0)
RETURN

▪ If data is to be displayed on screen but the screen never needs to be refreshed, there is no need
to preserve COMMON and stack screen. Do not use the COMMON variables, and at the end of the
subroutine, set REFRESH = 1.

▪ If data is to be displayed on screen and is to form part of the current screen display, add the string
to COMMON variable SCR.IMAGE.
In other words, use the following format in a BASIC subroutine:
SCR.IMAGE = SCR.IMAGE : @(x,y) : 'zzzzzzzzzzzzzzz'
or if in a process:
SCR.IMAGE = SCR.IMAGE : AT(x,y) : 'zzzzzzzzzzzzzzz'
where AT(x,y) is a valid element within an expression.
SBClient does its own screen refreshing. If SBClient is used to interface with SB/XA Application
Server, this is not required.

64

Chapter 11: DDE implementations in SB/XA
Application Server

This chapter describes DDE with SB/XA Application Server.

DDE and SB/XA Application Server
Dynamic Data Exchange is a Microsoft Windows protocol for communication between Windows
applications. A conversation can be held in which data is read and written, and an application's
actions may be controlled by another application. You should not confuse DDE with OLE (Object
Linking and Embedding), which is another Windows protocol that enables documents from one
application to be embedded in, and controlled from another, generally different, application.

Note: As a Windows protocol, DDE works in SB/XA Application Server only when using SBClient to
connect to a remote host. If connection is attempted in any other way, @RTN.FLAG is set to 1, and
should be tested in your process.

DDE allows sophisticated control of Windows applications to be achieved from SB/XA Application
Server.

DDE conversations are implemented in SB paragraphs using the following statements:

▪ DDECONNECT TO <exp1> RETURNING <handle> [WITH PATH <exp2> [MODE <exp3>]]
▪ DDEDISCONNECT FROM <hexp>
▪ DDEREAD <var> FROM <hexp> USING <exp1>
▪ DDEWRITE TO <hexp> USING <exp1> SENDING <exp2>
▪ DDEEXECUTE TO <hexp> SENDING <exp1>
▪ DDEGETERROR FROM <hexp>

All statements set @RTN.FLAG to 0 if successful. If a statement fails, @RTN.FLAG is set to 1 and @VALUE
will contain the error code.

A discussion of each statement follows.

DDECONNECT TO <exp1> RETURNING <handle> [WITH PATH <exp2>
[MODE <exp3>]]

Parameters

TO<exp1>

is an SB expression that results in the application name and topic of the Windows application to
connect to. In the case of Microsoft products, the application name is the name of the executable
program that launches the application, such as Excel or Access. Consult the DDE documentation for
your applications to determine the correct string.

The topic is the document to which to connect within the application—for example, a spreadsheet
such as SALES.XLS or a word processing document such as ROSTER.DOC. For Microsoft products, the
expression should evaluate to a string with the following format:

APPLICATION,TOPIC

Again, you should check the appropriate documents for your applications. For example:

DDECONNECT TO <exp1> RETURNING <handle> [WITH PATH <exp2> [MODE <exp3>]]

65

EXCEL,SALES.XLS

TO <exp1> is the only mandatory option. However, if the application is not started, connection will fail.
DDECONNECT will attempt to launch the application if a full path to the application is supplied with the
WITH PATH modifier.

RETURNING<handle>

returns the handle for the current connection, if made. This parameter is mandatory. <handle> is a
local or COMMON variable that will contain the handle returned. <hexp> used in other commands to
refer to this connection must evaluate to the value in this variable. Normally <hexp> would be a direct
reference to this variable.

WITH PATH<exp2>

is an SB expression that should evaluate to the full path name of the application, and optionally, the
document to be loaded. If this expression is provided, DDECONNECT automatically attempts to start
the application if initial connect fails. For example, the expression should evaluate to something like
this:

C:\EXCEL\EXCEL C:\EXCEL\EXAMPLES\SALES.XLS

The optional MODE modifier allows the launch state of the application to be specified.

MODE <exp3>

is an SB expression that should evaluate to a number between 0 and 8, and represents a launch state
for the window. The launch state is the mode in which the application is started and displayed. The
states are as follows:

Launch state Description

0 Runs the program and hides it. The program is running but you cannot switch to it,
and it does not appear on the task list.

1 Runs the program in the normal show state. The program is restored from either
the maximized or minimized state and activated.

2 Runs the program minimized. The program is running, but it is displayed as an icon.
3 Runs the program maximized. The program is displayed at its maximum size.
4 Runs the program in its current state, but does not activate. The program is invoked

in its previous state, but it is not made active.
5 Runs the program in its current state. The program is invoked in its previous state,

and is made active.
6 Runs the program minimized, and activates the top window in the task list. The

program is displayed as an icon and the program on the top of the task list (which
may be the specified program) is made active.

7 Runs the program minimized, but does not activate.
8 Runs the program in its current state and leaves the currently active window active.

DDECONNECT returns the following value:

<handle> Set to the handle of the application, which is re-
turned from Windows. If an error occurs, DDE-
CONNECT returns a handle of 0.

To ensure that a connection has been made successfully, check @RTN.FLAG after executing the
DDECONNECT command.

Chapter 11: DDE implementations in SB/XA Application Server

66

It is possible to have multiple connections active. We recommend that all intended connections be
opened and handles assigned before any further operations that involve @RTN.FLAG and/or @VALUE
are executed.

DDEDISCONNECT FROM <hexp>

Parameters

FROM <hexp>

is an SB expression that evaluates to the handle required to communicate with a specific Windows
application and topic. As described above, the normal procedure is to assign the handle returned
from the DDECONNECT statement to a local variable. <hexp> is therefore normally a local or COMMON
variable reference.

This command disconnects the DDE link to the application whose handle is specified in the
expression. Each link has to be specifically disconnected. There is no all option.

DDEDISCONNECT does not return a value. However, @RTN.FLG is set to 0 for success and 1 for failure.
@VALUE is also set on failure.

DDEREAD <var> FROM <hexp> USING <exp1>

Parameters

<var>

is a local or COMMON variable to which the data is assigned from the read.

FROM <hexp>

is an SB expression that evaluates to the handle required to communicate with a specific Windows
application and topic. As described above, the normal procedure is to assign the handle returned
from the DDECONNECT statement to a local variable. <hexp> is therefore normally a local or COMMON
variable reference.

USING <exp1>

is an SB expression that evaluates to an item name. In this context, item name means a Windows
reference item, such as a spreadsheet cell reference, a database table reference, or a highlighted
text reference in a Word processor. For example, R1C1 is an item name that refers to a cell in an Excel
spreadsheet.

This command reads the value in the location to which the item name in the application refers, and
returns that value (the paragraph or other SB process) to the requestor.

DDEREAD returns the following value:

<var> If the read is successful, contains the returned
data from the referenced location in the
application; if the read fails, the value is set to
zero.

The following example demonstrates the use of DDEREAD to transfer a block of data in an Excel
spreadsheet to two multivalued fields in an SB screen:

LOCAL HEXCEL,ROW,COL,WITEM, DDEDATA
DDECONNECT TO "EXCEL,BOOK1" RETURNING HEXCEL

DDEWRITE TO <hexp> USING <exp1> SENDING <exp2>

67

IF @RTN.FLAG THEN DISP 3,'COULD NOT CONNECT!' ; EXIT
DISP 9,'CONNECTED TO EXCEL,BOOK1'
DDEEXECUTE TO HEXCEL SENDING '[SELECT("R1C1")]'
DISP 9,'READING R1C1 TO R10C2'
FOR COL = 1 TO 2
 FOR ROW = 1 TO 10
 WITEM = "R":ROW:"C":COL
 DDEREAD DDEDATA FROM HEXCEL USING WITEM
 <COL,ROW> = DDEDATA
 NEXT ROW
NEXT COL
@REFRESH = 2
DDEDISCONNECT FROM HEXCEL
DISP 9,""

This example assumes that Excel is already running with BOOK1 active, and data entered in rows
1 to 10 in columns 1 and 2 in Book1 Sheet1, and that an SB screen with two multivalued fields
corresponding to @RECORD<1> and <2> is displayed. The process is called after the screen is
displayed; the process name is in the Process After Display slot in the F6-Additional Parameters
subscreen.

The screen is displayed, and then the DDE conversation executed. After completion,
@RECORD<1> contains values from R1C1 to R10C1, and @RECORD<2> contains values from R1C2 to
R10C2. The example can be refined further by testing for null or specific delimiter values from each
read, allowing you to loop until a meaningful delimiter or null value is reached.

DDEWRITE TO <hexp> USING <exp1> SENDING <exp2>

Parameters

TO <hexp>

is an SB expression that evaluates to the handle required to communicate with a specific Windows
application and topic. As described previously, the normal procedure is to assign the handle returned
from the DDECONNECT statement to a local variable. <hexp> is therefore normally a local or COMMON
variable reference.

USING <exp1>

is an SB expression that evaluates to an item name. In this context, item name means a Windows
reference item, such as a spreadsheet cell reference, a database table reference, or a highlighted
text reference in a Word processor. For example R1C1 is an item name that refers to a cell in an Excel
spreadsheet.

SENDING <exp2>

is an SB expression that evaluates to a value to be written to the location in the application specified
by the item name.

This command writes the value to the location referred to by the item name in the application.

DDEWRITE does not return a value. However, @RTN.FLG is set to 0 for success and 1 for failure. @VALUE
is also set on failure.

The following example demonstrates the use of DDEWRITE to transfer the contents of two multivalued
fields in an SB screen to the first ten rows of columns 1 and 2 in the Excel sheet BOOK1.

LOCAL HEXCEL,ROW,COL,WITEM
DDECONNECT TO "EXCEL,BOOK1" RETURNING HEXCEL
IF @RTN.FLAG THEN DISP 3,'COULD NOT CONNECT!' ; EXIT
DISP 9,'CONNECTED TO EXCEL,BOOK1'

Chapter 11: DDE implementations in SB/XA Application Server

68

DDEEXECUTE TO HEXCEL SENDING '[SELECT("R1C1")]'
DISP 9,'WRITING R1C1 TO R10C2 FROM <1> AND <2>'
FOR COL = 1 TO 2
 FOR ROW = 1 TO 10
 WITEM = "R":ROW:"C":COL
 DDEWRITE TO HEXCEL USING WITEM SENDING <COL,ROW>
 NEXT ROW
NEXT COL
DDEDISCONNECT FROM HEXCEL
DISP 9,""

This example assumes that Excel is already running with BOOK1 active, and that you have entered
data in an SB screen that has two multivalued fields corresponding to @RECORD<1> and <2>. The
process name is in the Process After Update slot in the F6-Additional Parameters subscreen.

After data has been entered and accepted, the DDE conversation is executed. After completion,
locations R1C1 to R10C1 contain the data from @RECORD<1>, and locations R1C2 to R10C2 contain
the data from @RECORD<2>. A more sophisticated example might transfer each value as it is entered
by using a process in the Process After slot in the Enter Field subscreen, after performing the DDE
connection at the start of the screen.

DDEEXECUTE TO <hexp> SENDING <exp1>

Parameters

TO <hexp>

is an SB expression that evaluates to the handle required to communicate with a specific Windows
application and topic. As described above, the normal procedure is to assign the handle returned
from the DDECONNECT statement to a local variable. <hexp> is therefore normally a local or COMMON
variable reference.

SENDING <exp1>

is an SB expression that evaluates to a string that corresponds to an executable command, such as a
macro, in the application.

This command passes the command string to the application and then signals the application
to execute the command string. The string can be any set of control codes or characters used to
manipulate a Windows application.

DDEEXECUTE does not return a value. However, @RTN.FLG is set to 0 for success and 1 for failure.
@VALUE is also set on failure.

The following lines demonstrate the use of DDEEXECUTE:

...
DDEEXECUTE TO HEXCEL SENDING '[SELECT("R1C1")]'
...
DDEEXECUTE TO HEXCEL SENDING '[OPEN("C:\EXCEL\EXAMPLES\SALES.XLS")]'
...

DDEGETERROR FROM <hexp>

Parameters

FROM <hexp>

DDEGETERROR FROM <hexp>

69

is an SB expression that evaluates to the handle required to communicate with a specific Windows
application and topic. As described above, the normal procedure is to assign the handle returned
from the DDECONNECT statement to a local variable. <hexp> is therefore normally a local or COMMON
variable reference.

This command obtains the error condition from the last DDE command to be performed. This may
be useful for development purposes, or when the error condition return in @VALUE from the previous
command is overwritten, and the last error condition needs to be known. It may also useful for
developing formal error handling processes.

DDEGETERROR returns the following value:

@VALUE If GETERROR was successful, contains the last
error code \; otherwise, contains the error for
GETERROR itself.

The following demonstrates the use of DDEGETERROR:

DDEGETERROR FROM HEXCEL
BEGIN CASE
 CASE @VALUE = 5
 DISP 3,'COULD NOT OPEN SHEET'
 CASE @VALUE = 6
 DISP 3,'COULD NOT RESOLVE REFERENCE'
END CASE

70

Chapter 12: Aspects of GUI conversion
This chapter contains notes on issues that arise when you convert a character-based application to a
graphical user interface.

Notes on GUI Conversion
Process Slots in Menus

Except for Process Before Option Execute and Process After Option Execute, all process slots in
menus are lost when converting to type 5 menus. The top menu, however, uses the Process At Start
process slot.

Fixed Pitch Fonts

Since GUItization requires the conversion of fixed pitch fonts to proportional fonts (where the width
of each character depends on its shape), fields that are too close together may overlap and need to be
manually adjusted using the form painter.

Use of proportional fonts may enable users to enter more characters in a field than the defined field
length. As a result, the field may be truncated when it is displayed in a character-based screen/report.

Character Emulation Object (CEO)

The following are sent to the default CEO.

▪ BASIC code CRT/PRINT and INPUT statements attached to an SB screen. You should recode to
remove these statements.

▪ CRT/PRINT and INPUT statements in BASIC programs wrapped in SB/XA Application Server. To deal
with these, create your own CEO. For more information, see CEO example, on page 71).

▪ CRTs and INPUTs in paragraphs (with the exception of inputs to the SB prompt line, which are
GUItized automatically).

Data sent to the default CEO may be obscured by the application’s GUItized forms.

If you enter the BASIC runtime debugger, control is passed to the default CEO.

Features Not Supported in GUI

Type ahead is not supported in type 5 (standard Windows) menus. It is supported elsewhere.

Forms do not support the multivalue indicator option.

The R (Refresh screen) and P (Print screen) SB processes are not supported in GUI mode.

Quick Build is not currently supported in GUI mode.

User macro keys are not supported. You may, however, use the standard Windows cut, copy, and
paste shortcuts by highlighting text in an input field and using Ctrl-X (cut), Ctrl-C (copy) and Ctrl-V
(paste).

Buttons created by the LFK process called within a form do not replace the buttons originally in the
form, but supplement them by creating a speed bar.

71

Chapter 13: CEO example
This chapter shows a code example for creating a character emulation object (CEO).

CEO code example
The following example contains commented code that shows you how to create a CEO.

**
* This example shows how to create a CEO object to handle the
* input/output for this function, when run under SB/XA Application
* Server.
 **
 INCLUDE DMSKELCODE COMMON
 INCLUDE DMSKELCODE STANDARD.EQU
 INCLUDE DMSKELCODE ROC.H
*
 CURR.GUI = GUI ;* Preserve current value of GUI flag
*
 Z = 80 ;* Width required for the screen
*
* In GUI mode, if output is to screen, create CEO
 IF GUI THEN ;* Running on GUI capable device?
 * Push current screen
 CALL SB.STACK.SCREEN(0,”,0)
 * The following code will create a CEO object of width 'Z'
 IF Z > TERM.DEFN<5,1> THEN
 VERB = 'TERM ':Z:COMMA:TERM.DEFN<5,2>
 CALL SB.EXECUTE(VERB, 2, '', '', '', '', '', '', '')
 IF TERM.DEFN<20,1>+0 THEN SLEEP TERM.DEFN<20,1>
 VALS = Z
 END ELSE VALS = ''
 VALS = LEVEL.NO:VM:'ARD':VM:VALS:SVM:TERM.DEFN<5,2>
 CALL SB.ROC(ROC.SET.ATTRIB, '', SBH.DISP.CEO, VALS, Z)
 GUI.COLOR = CHAR27:'CB7.':CHAR27:'CF0.' ;* black on grey
 CRT GUI.COLOR:@(-1): ;* Clear CEO to color
 ECHO ON ;* If (not already on)
 GUI = 0 ;* Disable GUI mode (because we have a CEO)
 END
*
* mainline code
 .
 .
 .
 .
*
*
 IF Z > TERM.DEFN<5,1> THEN
 VERB = 'TERM ':TERM.DEFN<5,1>:COMMA:TERM.DEFN<5,2>
 CALL SB.EXECUTE(VERB, 2, '', '', '', '', '', '', '')
 IF TERM.DEFN<20,1>+0 THEN SLEEP TERM.DEFN<20,1>
 END
*
* End of program
*
 GUI = CURR.GUI ;* Restore 'GUI' mode flag
*
IF GUI THEN

Chapter 13: CEO example

72

 * Restore screen and destroy CEO
 CALL SB.STACK.SCREEN(1,”,0)
END
*
 * If program does NOT use SB.STACK.SCREEN, the following lines
 * are required to destroy the CEO object!
 IF GUI THEN ;* Did we create a CEO ?
 * Yes, destroy the CEO & enable prior form !
 VALS = LEVEL.NO:VM:1
 CALL SB.ROC(ROC.SET.ATTRIB, '', SBH.KILL.FORM, VALS, Z)
 END
 RETURN
*
 END

73

Chapter 14: GUI classes and their attributes
An object class defines a type of object (such as a label) by specifying what its attributes are (for
example, justification and coordinates) and how they behave. An attribute’s behavior is determined
by the set of values (such as left and right) that may be assigned to it when an instance of the object is
created.

You may specify and modify the values for an object’s attributes in the Properties Window for the
selected object.

Note: The terms “attribute” and “property” are generally interchangeable when referring to the
characteristics of an object. In this document, the term “attribute” is used.

Classes and their attributes
Table 11: Classes and Their Attributes

Class Attributes

form background, border_color, border_style, border_width, coordinates,
dimensions, icon, tile, title

label background, border_color, border_style, border_width, coordinates,
dimensions, emphasized, font, foreground, graphic, justification, scale_bmp,
string, tile

text (field) background, border_color, border_style, border_width, coordinates, cursor,
dimensions, font, foreground

button background, border_width, coordinates, dimensions, down_graphic,
down_string, emphasized, font, foreground, graphic, help_string, justification,
scale_bmp, string, tile

separator border_style, coordinates, dimensions, direction, foreground
rectangle background, border_color, border_style, border_width, coordinates,

dimensions, tile
radio background, border_color, border_style, border_width, coordinates, cursor,

dimensions, direction, false_fill, false_graphic, font, scale_bmp, style, tile,
toggle_border_width, toggle_size, toggle_tile, true_fill, true_graphic

toggle background, border_color, border_style, border_width, coordinates,
dimensions, false_fill, false_graphic, font, foreground, style, tile, toggle_label,
toggle_size, true_fill, true_graphic

image background, border_color, border_style, border_width, coordinates,
dimensions, scale_bmp, tile

combobox background, border_color, border_style, border_width, coordinates, cursor,
dimensions, font, foreground, num_lines

A description for each attribute is provided in the section that follows.

Attribute Descriptions
background

The background color of the object. This attribute is ignored if an image or tile is used.

Chapter 14: GUI classes and their attributes

74

Specify a particular color by entering the appropriate values for the three primary colors:
red;green;blue. For instance: 3;20;210 creates a color made up of the specified hues of red (3), green
(120) and blue (210). Each number must be in the range 0-255.

border_color

The color of the border to be drawn around the object.

Specify a particular color by entering the appropriate values for the three primary colors:
red;green;blue. For instance: 3;20;210 creates a color made up of the specified hues of red (3), green
(120) and blue (210). Each number must be in the range 0-255.

border_style

The type of border to be drawn around the object. Possible values are as follows:

Border style Description

raised The border is shaded so that the object appears to be elevated from the
background surface.

lowered The border is shaded so that the object appears to be sunk into the background
surface.

flat The border is flat; neither raised or lowered.

border_width

The width of the border to be drawn around the object. The value is given in pixels.

Borders encroach upon the dimensions of the object, and their width should be considered when
sizing an object and positioning children.

coordinates

The pixel address, relative to the object’s parent, of the top-left corner of the object. The format is x,y.

cursor

Defines an image for the cursor used by an object. This is a system dependent attribute, and is
normally an arrow, but may change from one object to another.

dimensions

The pixel width and pixel height of the object. Its format is width,height.

direction

The direction of the separator line. Possible values are HORIZONTAL and VERTICAL.

down_graphic

The graphic to be displayed when a button is displaying an image, and the push button is in the
pressed state. If this is not set, the image defined in <GRAPHIC> is used but offset two pixels right and
two pixels down.

Attribute Descriptions

75

down_string

The string to be displayed when a button is displaying a text string, and the push button is in the
pressed state. This defaults to <STRING>.

emphasized

A Boolean value determining whether or not the object is capable of receiving input events. Possible
values are true and false. If false, the object is displayed in the system defined de-emphasized state.
For instance, a menu option might be shown grayed out if it is currently of no relevance to the user.

false_fill

The color with which to fill the toggle when in the FALSE state. This is used in CIRCLE and DIAMOND
style toggles.

false_graphic

The image to place on the button when in the FALSE state.

font

The font used when an object is displaying a string. The format is as follows:

fontfamily*pointsize*style*effect.

For instance: Arial*8*bold*normal.

foreground

The color of text in the object or the on-bit value if the object is displaying an image.

Specify a particular color by entering the appropriate values for the three primary colors:
red;green;blue. For instance: 3;20;210 creates a color made up of the specified hues of red (3), green
(120) and blue (210). Each number must be in the range 0-255.

graphic

The name of a file containing image information. The format of this file is Microsoft Windows system
specific.

help_string

The help text displayed when the cursor is placed over an object. This is also known as a ToolTip.

icon

This is the name of the icon file used to represent the minimized form.

justification

The justification used when displaying either string or graphic. Possible values are: left, center, right,
top_left, top_center, top_right, bottom_left, bottom_center, bottom_right.

num_lines

The number of lines that will be displayed in the option list drop-down box.

Chapter 14: GUI classes and their attributes

76

scale_bmp

A Boolean value determining whether the <TILE> attribute image should be scaled to fit the object
dimensions or whether the image should just be repeated at its real size until the entire region is
covered.

string

The string of characters to appear on the label object. The type of label (character or image) is
determined by whether string or graphic has been most recently set.

style

This defines the style or appearance of the object. You can choose from the following style options for
the toggle object:

▪ CHECK
▪ CROSS
▪ BUTTON
▪ CIRCLE
▪ BITMAP
▪ MSCROSS
▪ MSCIRCLE

tile

The name of a file containing an image to be used as the background for the object. An additional
parameter can be added to <TILE> to indicate which object, in this object’s parentage, the
image should be aligned to. By default, a gadget object <TILE> is aligned to its parent’s 0,0 coordinate,
and a non-gadget object <TILE> is aligned to its own 0,0 coordinate.

title

The text to appear in the title bar for the window.

toggle_border_width

The width of the borders in CHECK, BUTTON, DIAMOND, and BITMAP style toggles.

toggle_size

The width and height of the toggle button in pixels. Since the toggle button is a perfect square, only
one dimension is specified.

true_fill

The color to fill the toggle with when in the TRUE state. Used in CIRCLE and DIAMOND style toggles.

true_graphic

The image to place on the button and check toggle when in the TRUE state. If <STYLE> is set to CHECK,
the default for <TRUE_GRAPHIC> becomes CHECK_BMP.

77

Chapter 15: SB OLE Server
This appendix describes the GUI Server, which allows you to control SB applications from the client,
using either Microsoft Visual Basic or Inprise Delphi programming language.

About SB OLE Server
You can control SB/XA Application Server through SBClient while making the user interface of SBClient
invisible. Using the self-contained forms functionality of SB/XA Application Server, it is possible to
invoke SB/XA Application Server commands and see the screens associated with the resultant SB/XA
Application Server processes without the SB/XA Application Server main background window (known
as MainWin) or SBClient user interface being visible. This gives developers a great deal of flexibility in
customizing applications.

Note: The code examples contained in this section are Microsoft Visual Basic (VB) 5 based routines
that represent a client application interacting with SB OLE Server. This application is a VB Explorer
that demonstrates accessing various SB/XA Application Server commands (via an “invisible”
SBClient) using a TreeView control. The VB example is on the SBClient product CD in the samples
area. We recommend, however, that you first read the following sections and review the VB code
examples to get a general overview of the SB OLE Server.

Components of SB OLE Server

Before explaining how to use this functionality, it is useful to first describe each part of the term “SB
OLE Server,” which we have given to this mode of operation.

SB

SB means SystemBuilder. SystemBuilder is the product family name; it encompasses the components
of SB/XA, including SB/XA Application Server, SB/XA Communications Server, SB/XA Presentation
Components, and SBClient, collectively.

Note: The product family name is not to be confused with the older version of SB+ Server that was
called System Builder.

OLE

In its early days, OLE was simply a means of enabling object linking and embedding objects — for
example, embedding a Microsoft Excel spreadsheet in another application such as a Microsoft Word
document. OLE enabled one application to use the toolbars and pull-down menus of the other
application, typically using a technique known as “in-place activation.”

Today, however, OLE represents a number of technologies created by Microsoft. ActiveX is another
term that Microsoft uses to denote these technologies.

Server

In the context of SB/XA Application Server and SBClient, it is those OLE technologies that enable
object-based components to be written and that enable a component to expose commands

Chapter 15: SB OLE Server

78

(properties and methods) to other applications that have been used. SBClient has become, via an
ActiveX DLL (called SBCom.dll), an OLE automation server.

Through SBCom.dll, SBClient exposes a set of methods and properties and generates events (an API
in effect) that a calling application can reference in order to drive SB/XA Application Server. When
these methods and properties are activated by a calling application, SBCom.dll makes the necessary
communication with SB/XA Application Server. The calling application therefore does not of itself
directly control SB/XA Application Server.

The following diagram illustrates the overall process of SB OLE Server communication:

Using SB OLE Server

In order to use the SB OLE Server functionality, interaction takes place through four components:

▪ Client application
▪ SBClient
▪ SB/XA Application Server
▪ Custom application (created using SB/XA Application Server)

The following sections describe the steps involved in interacting with the various components.

There are two main tasks in using the SB OLE Server:

▪ First, you must set up SBClient scripts so SBClient is “primed” for use with the SB OLE Server.
▪ Second, a number of steps need to be performed in the code of a client application that calls the

SB OLE Server of SBClient.

Using SB OLE Server

79

To set up an SBClient script:

1. Start SBClient as usual, from the Windows Start menu. Set up the parameters required to enable
a connection to the host machine, such as host IP address and terminal type.

2. From the Setup → Script screen, enter the user-defined script replacement strings that the client
code is to use. For example:
un=markc
pw=mypassword
account=SBDEMO
When running the application client code, ensure that the replacement strings are passed when
StartServer is called. If no strings were specified in the Setup → Script option, all responses
are embedded in the configuration, so the calling client application does not need to pass
replacement strings.

3. Click OK.
4. Save the configuration through the File → Save As configuration menu option.
5. Select the Script → Autolearn dialog box and assign a name to the script.
6. Click OK.
7. Connect.
8. Enter details required to log on to UNIX/Windows and the data server (UniData/UniVerse) and

to SB/XA Application Server. When prompted for the terminal type, enter Term.SERVER where
Term is the terminal type. For example: TU.VT220.SERVER.
The session disappears from the screen while it logs you on and downloads any initial forms.

9. Wait until initialization is completed, and then right-click the SBClient icon in the Windows system
tray at the lower-right corner of the task bar.

10. Select Stop Script from the SBClient system tray menu.
11. Right-click the SBClient icon in the Windows system tray again and click Shutdown Server.
12. When SBClient reappears, select the Setup → Script menu screen. Select the script you have just

recorded for the login script and select Hidden for the Session Behavior while running the script.
13. Click OK.
14. Select File → Save Configuration.
15. Save the session as a document by selecting Utilities → Configuration Sharing → Save File> > .

Only valid Windows filenames are supported.
16. Shut down SBClient.

To use the SB OLE Server (SBCom.dll):

A section later in this document covers the available methods and events in detail. The steps involved
in using the SB OLE Server are as follows:

1. Your application needs to reference SBComLib (effectively the class name in SBCom.dll). In Visual
Basic, do this by selecting Project → References.

2. Scroll through the list of available OLE automation objects, and locate the SBComLib object,
which is described as SBCom 1.0 Type Library. Select the check box for this object.

3. Click OK.
4. Your application needs to create an instance of the SBComLib object. For example:

'Declare object
Public WithEvents sbc As SBCOMLib.SBClient
.
.
'Create the instance of the object
Set sbc = CreateObject("SBClient.SBClient.1")

'Declare object Public WithEvents sbc As SBCOMLib.SBClient .

Chapter 15: SB OLE Server

80

Note:

In Visual Basic, you can create an instance of the SBComLib object only within a form or class
module. Therefore, you should not use a Bas module to access the SBCom object as you will
not be able to use the WithEvents keyword in your code. WithEvents is required in order for
your application to receive events from the SBComLib object.

The preceding code extract uses early binding. For performance reasons, we do not
recommend using late binding with SBCom.dll.

5. You must now create a subprocedure used to receive events from the SBCom object.

Private Sub sbc_EventServer(ByVal event_type As Long, _
ByVal event_src As String, ByVal event_data as string)

With frmExample
.lblReceivedEventType.caption=event_type
.lblReceivedEventType.caption=event_src
.lblReceivedEventType.caption=event_data
End With

End Sub

6. Your application should now activate the StartServer method.

Dim val As Variant
Dim Status As Long
Dim pw As String
Dim uname As String
 uname = txtUserName.Text
 pw = txtPassword.Text
 ' Start the server passing the .SBC config and user variables
 ' in this case "un~" & usernamevariable;"pw~" & _
' passwordvariable are passed. There are thus
 ' 2 user variables passed. There can be any number passed
separated
 ' by semicolons. This means that if the script has
[user_data("un")]
 ' as a response to a trigger, the script will substitute the value
 ' that was passed as uname. If the variables are setup in the
 ' script set up screen as user defined script replacements,
 ' eg usernamevariable=mark
 ' passwordvariable=mypassword
 ' then the auto script learn will insert the [user_data("un")]
 ' whenever the user types in the word "mark"
 ' Set a timeout of 10 secs for this and all subsequent calls
 Status = sbc.StartServer(File1.Path & "\" & File1.filename, "un~" &
_
 usernamevariable & ";pw~" & passwordvariable, 10, SessionHandle)

7. Status is a lengthy integer data type with a valid range from -2,147,483,648 to 2,147,483,647.
When set, it signifies that the StartServer method has returned.

8. Your application code should now continue to wait until the EventServer events have been
received.

9. After the EventServer event has been received (when “state” has been returned with a READY
value of 1), it is possible to use the SendEvent method of SBCom.dll. The SendEvent method
is used to trigger an SB/XA Application Server function (process definition). When you use the
SendEvent method, you provide a number of parameters (described later in this document). One
of these parameters is the process definition ID you want to call.

Host Interface

81

The SendEvent method is returned as soon as SBCom.dll has sent the data to the host on which
SB/XA Application Server resides.

10. When communication between SB/XA Application Server and SBClient has satisfactorily
concluded, SB/XA Application Server calls the TU.SET.SERVER.STATE function with a READY state.
This is recorded in the previously described EventServer event, which your application code can
be made to detect.

11. To shut down SB/XA Application Server, you must use the SendEvent method, which includes the
sbcom_exit parameter, similar to the following code extract:

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
Private Sub mnuLogoff_Click()
Dim Status As Long
Dim val As Variant
' shutdown SB/XA Application Server and unload form
 Status = sbc.SendEvent(SessionHandle, "SB+", SessionHandle
& ";sbcom_exit", val)
 If Status <> 0 Then
 'Handle the error
 End If
End Sub

12. This should be followed by a call to the ShutDownServer function, passing it the handle of the
session to shut down. This shuts down SBClient.

Note: It is important to allow enough time for the host to execute each call so the connection
is not closed before the host is able to shut down properly.

The following code extract shows a typical example of using the ShutDownServer() method.

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
Private Sub Form_Unload(Cancel As Integer)
Dim Status As Long
Dim val As Variant
 ' Shut down SBClient sbcom object. This must be done before setting
 ' the sbc object to nothing
 sbc.ShutdownServer (SessionHandle):
 ' One way to allow sbc object enough time to
 ' shut down
 MsgBox “You may now exit the system”
 ' Release object
 Set sbc = Nothing
End Sub

13. Destroy the object:

Set sbc = Nothing

Host Interface
The following routines enable the host code (custom application created using SB/XA Application
Server) to communicate with the client code, if required. They are included in the standard SBClient
HOST LIBRARY.

Chapter 15: SB OLE Server

82

TU.SEND.EVENT is to be used for generic user-defined events, while TU.SET.SERVER.STATE is to be
used to inform the client code (and SBClient) of the current state of the host.

TU.SEND.EVENT()

This function generates a SERVER_EVENT event to the client program using the SBClient COM object.
The EVENT string is included in the generated event.

This function has the following syntax:

TU.SEND.EVENT(Event, Eventdata, Options, Error)

Passed

Parameter Description

Event User-defined event name.
Eventdata User-defined event data. This can be any data the host needs to send to the

client.
Options Reserved for future use.

Returned

Parameter Description

Error Returns the status of the operation. 0 is success. For a list of error codes, see
Error codes, on page 92.

TU.SET.SERVER()

This function generates a SERVER_STATE event to the client program using the SBClient COM object.
The STATE parameter is included in the generated event.

This function has the following syntax:

TU.SET.SERVER.STATE(State, Options, Error)

Passed

Parameter Description

State This corresponds to the SERVER_STATE event defined under Events in the
ActiveX interface section (READY, BUSY, or SHUTDOWN).

Options Reserved for future use.

Returned

Parameter Description

Error Returns the status of the operation. 0 is success. For a list of error codes, see
Error codes, on page 92

SB/XA Application Server Interface
SB/XA Application Server provides an interface for internal processes, as well as a server that can
dispatch events to user-defined host code.

This enables client code to run any SB/XA Application Server process on the host, which can then
return values to the client code. SB/XA Application Server handles most of the server communications;

SB/XA Application Server Interface

83

however, it is still possible for any user-defined host code to send events to the client code. For more
information, see Host Interface, on page 81.)

Note: SB/XA Application Server runs in GUI mode only.

To start the session, the client code runs StartServer, passing the name of a valid session configuration
document (and its path) and UNIX/Windows and SB user login details (see ActiveX interface
documentation). The session should have an appropriate script attached that uses the login
information to log the user on to UNIX and SB/XA Application Server. A terminal type of TU.xxx.SERVER
(for example, TU.VT220.SERVER) tells SB/XA Application Server that it must run in SERVER mode.
Internally, the SB.LOGIN program replaces this terminal type with TU.xxx.GUI and invokes the
SB.GUI.SERVER program.

SB.GUI.SERVER establishes the correct environment (Common block, Sysid), calls
TU.SET.SERVER.STATE with a READY status, and then waits for a client-generated event.

SB/XA Application Server can receive five possible events:

▪ Execute Process (interactive)
SB/XA Application Server can be told to run an interactive process, such as an input/output
process, menu process, or help window display. After the form is displayed, SB/XA Application
Server calls TU.SET.SERVER.STATE to let the client code know that the server is ready for more
interactive commands. At this point, the program control is in SB.GUI.INP (standard input routine),
SB.MENU.GUI (menu selection), SB.DISP.BOXTEXT (help display), or any SB program capable of
receiving and processing events.

▪ Execute Process (non-interactive)
This type of event causes the process to be executed until completion before setting the Server
state to READY. Some examples of processes to be invoked in this manner are CEOs, Access
Reports, Select processes.

▪ Get Menu Level (non-interactive)
The client code uses this type of call to get the menu tree information. The server returns the menu
options and process types (such as input, output, selection, or shell process) to the client code.

▪ Exit Server (non-interactive)
This event causes SB/XA Application Server to shut down.

▪ Modify Process (interactive)
This is equivalent to typing /MP to modify a process.
The client code needs to specify one of the five event types when calling a menu/process. The
mode is passed as part of the event_string in the SendEvent() method. The following are syntax
examples of the event_string parameter in the SendEvent() method when using Microsoft Visual
Basic:

event_string parameter Description and syntax

sbcom_process Run a process in interactive mode.

Syntax: event_string = session_handle & ";sbcom_process;"&
processname[,parameter][;processdata]

sbcom_modal Run a process in non-interactive mode.

Syntax:event_string = session_handle & ";
sbcom_modal;"&processname[,parameter][;processdata]

sbcom_menu Get a menu level in non-interactive mode.

Syntax: event_string = session_handle & ";sbcom_menu;"& menuname
sbcom_exit Shut down SB/XA Application Server.

Syntax: event_string = session_handle & ";sbcom_exit"

Chapter 15: SB OLE Server

84

event_string parameter Description and syntax

tree_modify Call modify process.

Syntax: event_string = session_handle & ";tree_modify;" & processname

SBClient Methods
SBCom.dll exposes the following methods to a calling application (an application that references the
object containing the method). These examples assume that you have previously created an instance
of SBCom called sbc using the following line of Microsoft Visual Basic code:

Set sbc = CreateObject("SBClient.SBClient.1")

StartServer()

This method must be called to initialize all the communication channels and start the server before
calling any other methods.

Syntax

status = objectname.StartServer(session_id, parameters, timeout, session_handle)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
Status = sbc.StartServer(File1.Path & "\" & File1.filename, "un~"
& uname _
& ";pw~" & pw, 10, SessionHandle)

Parameters

Status

Overview After making a call to StartServer(), the client application code should wait for
the EventServer event with an event type of SERVER_STATE to determine when
the server is ready. It should not rely on the status returned by StartServer() to
determine whether the server is ready (see Return value description).

If status does not equal 0, the number represents the error code.

Note: The client can display the progress of the login as it receives various
server states that track the progress. (See SBClient Events, on page 91.)

Return If SBClient executes StartServer(), a zero (0) is returned. StartServer() returns
immediately and does not wait for the server to be ready. A zero does not
indicate that the server has started; rather, it indicates that the command to
start the server has been sent to the host successfully.

session_id

Input This is the file name of a .sbc file that includes a script to log on to SB/XA
Application Server.

ShutdownServer()

85

parameters

Overview This contains script replacement values for user IDs and passwords (such
as unix user_id and password, and SB/XA Application Server user_id and
password). The parameters are semicolon-delimited.

Input Each pair of parameters is tilde (~) delimited. For example:

"un~" usernamevariable;"pw~" & passwordvariable.

In this case, "un~" & usernamevariable;"pw~"& passwordvariable passes two
replacement variables. When un is encountered in a response to a trigger
in a script, usernamevariable is substituted. Similarly, passwordvariable is
substituted for pw. Any number of replacement variables can be passed; the
semicolon separates replacement variables. If the script has [user_data("un")]
as a response to a trigger, the script substitutes the value that was passed as
usernamevariable.

Example If the variables are set up via the Setup → Script command as user-defined
script replacements,

usernamevariable=mark

passwordvariable=mypassword

then the auto script learn inserts the [user_data("un")]' whenever the user
types the word mark.

timeout

Overview Specifies a default timeout value for this call and calls to all other methods.
Where a timeout value is specified in a call to a different method, that timeout
takes precedence for the call to that method.

Input The timeout in this method refers only to the time taken for the client code
method call to return from SBClient. The method returns as soon as SBClient
has sent the request/data to the host; it does not wait until the host receives (or
processes) the request/data.

session_handle

Output If the server is started successfully (status = 0), a valid session handle is
returned. This is to be used in all subsequent calls to the interface.

Note: A valid session handle is denoted by a positive number. The positive number represents
the “internal identity” of an SB OLE Server object that has been created. If the session handle is
returned as a zero (0), an error has occurred.

ShutdownServer()

This method should be called before the client application shuts down.

Note: Before calling this method, the client code should have sent the shutdown sequence
"sbcom_exit" to the host program with sbc.SendEvent(); otherwise, the host program will be left
running.

Chapter 15: SB OLE Server

86

Syntax

sbc.ShutdownServer(session_handle, timeout)

Public SessionHandle As Variant
Public WithEvents sbc As SBCOMLib.SBClient
.
.
sbc.ShutdownServer (SessionHandle):

Parameters

session_handle

Input This is the valid session handle received from a call to StartServer()

timeout

Input Optional. If specified, this timeout takes precedence over the timeout specified
in StartServer().

The timeout in this method refers only to the time taken for the client code method call to return from
SBClient. The method will return as soon as SBClient has sent the request/data to the host, that is it
will not wait until the host receives (or processes) the request/data.

SendEvent()

This is the method that the client application uses to communicate with the host (or server machine).

Syntax

status = objectname.SendEvent(session_handle, event_type, event_string, retStr, timeout)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
Status = sbc.SendEvent(SessionHandle, "DEBUG", "1;" &
Picture1.hwnd, val)

This method can be called only if the server is in the READY state. The client program can determine
the server state by calling the CheckServerState() method or waiting for a SERVER_STATE event to be
generated.

Parameters

status

Output If the event was successfully sent to the server program, the status is 0. Note
that no acknowledgment from the server is required. If a number between 2
and 7 is returned, this indicates that the server is not ready to handle events
and the event was not sent to the host. The numbers indicate the actual state
of the server.

session_handle

SendEvent()

87

Input Valid session handle received from a call to StartServer().

event_type

Type of event to generate to host. The table below identifies the values for each event_type. Valid
event types are as follows:

▪ SB+
Used when communicating with an SB/XA Application Server. The data is packaged in a manner
that SB/XA Application Server understands.

▪ STRING
Used when sending any string directly to the host without any packaging.

▪ SB+SYNCHRONOUS
Used when sending data to the host, which requires a return value from the host before the client
code can continue.

Caution: Careful consideration should be given before using SB+SYNCHRONOUS because
client code will not continue running until the server has completed its actions. In effect, this
“freezes” the client code unless the client code has other threads running. We recommend
that you use SB+ instead, and wait for a SERVER READY event from the host to achieve similar
functionality.

▪ DEBUG
If this is set, the SBClient terminal displays the session while logging in.

The following table shows the values for each event_type/event_string combination.

Table 12: Possible Values for event_type/event_string Combinations

event_type event_string

SB+ session_handle & “;sbcom_process;” & processname

session_handle & “;sbcom_modal;” & processname

session_handle & “;sbcom_menu;” & menuname

session_handle & “;sbcom_exit;”
String “Any string”
SB+ Synchronous session_handle & “;sbcom_process;” & processname

session_handle & “;sbcom_modal;” & processname

session_handle & “;sbcom_menu;” & menuname

session_handle & “;sbcom_exit;”
Debug “1” & window handle

True 1 False 0

event_string

Overview User-defined parameter to be passed to the server program running on
the host. The required value of the parameter depends on the event_type
parameter shown in the above table.

Chapter 15: SB OLE Server

88

Input When you use SB+ or SB+ SYNCHRONOUS as the event type, the event_string
must be made up of the following three parameters, concatenated together
and delimited with semicolons:

▪ Object_Details – The Session handle (which is the same as the value passed
in the session handle parameter shown above).

▪ Event – One of the following events: sbcom_process, sbcom_modal,
sbcom_menu, sbcom_exit, or tree_-modify. For a description of these
events, see the section on SB+.

▪ Any additional data required for the event.
session_handle & “;sbcom_process;” & processname

When using STRING as the event_type, the event_string can be any literal string that you want to send
to the host.

When using DEBUG as the event_type, the event_string can be 1 or 0 to turn debug ON or OFF.
If you also pass a valid Windows handle, the session will be displayed in your window e.g. “1;” &
picture1.hwnd.

retStr

Output The value returned by the function when used in synchronous mode, for
example, event_type = SB+SYNCHRONOUS.

timeout

Overview This determines the time to allocate for a timeout.
Input Optional. If specified, this timeout takes precedence over the timeout specified

in StartServer().

If using SB+, STRING, or DEBUG, the timeout in this method refers only to the
time taken for the client code method call to return from SBClient. The method
will return as soon as SBClient has sent the request/data to the host, that is it
will not wait until the host receives (or processes) the request/data.

Otherwise, if using SB+ SYNCHRONOUS then this represents the entire time for
the host to respond.

CheckServerState()

Syntax

state = objectname.CheckServerState(session_handle, timeout)

Parameters

state

SetOptions()

89

Output Returns the current state value for the session handle. State can take one of the
following values:

▪ 1 = READY
▪ 2 = BUSY
▪ 3 = SHUTDOWN
▪ 4,5,6,7 = Sequential progress indicators during login and connection to the

host.
for example 4 is 25% done.

Note: Any call to SendEvent() fails immediately if the server is not in the READY state.

session_handle

Input Valid session handle received from a call to StartServer().

timeout

Input Optional. If specified, this timeout takes precedence over the timeout specified
in StartServer().

The timeout in this method refers only to the time taken for the client code
method call to return from SBClient. The method will return as soon as
SBClient has sent the request/data to the host, that is it will not wait until the
host receives (or processes) the request/data.

SetOptions()

This method is used to set the various SBClient options.

Syntax

status = objectname.SetOptions(session_handle, options, timeout)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
sbc.SetOptions(SessionHandle, "server_state~1")

Parameters

status

Output Returns zero (0) if the options were set successfully.

session_handle

Input This is the valid session handle received from a call to StartServer()

Options

Chapter 15: SB OLE Server

90

Input SBClient client options. The only options currently supported are
SERVER_STATE and LAST_EVENT.

SERVER_STATE can take one of the following values:

1 - READY

2 - BUSY

3 - SHUTDOWN

The options are semicolon-delimited and the option-value pairs are tilde-
delimited (~), as shown in the following example:

objectname.SetOptions(session_handle, "SERVER_STATE~1")

LAST_EVENT can be set to null to clear the value contained in the internal
LAST_EVENT parameter. This is useful in determining whether you have missed
an event, as in the case where Microsoft Visual Basic discards events. An
example of this would be when you display a modal message box and Visual
Basic discards events sent to it. To ensure that you don’t miss an event when
displaying such a dialog box, you can set the LAST_EVENT to null and then
when you remove the dialog box, you can check (using GetOptions) whether
the value is still null or whether you need to process a missed event.

timeout

Input Optional. If specified, this timeout takes precedence over the timeout specified
in StartServer().

The timeout in this method refers only to the time taken for the client code
method call to return from SBClient. The method returns as soon as SBClient
has sent the request/data to the host; it does not wait until the host receives (or
processes) the request/data.

GetOptions()

This method is used to get the various SBClient options

Syntax

value = objectname.GetOptions(session_handle, options, timeout)

Public WithEvents sbc As SBCOMLib.SBClient
Public SessionHandle As Variant
.
.
instpath = sbc.GetOptions(SessionHandle, "installpath")

Parameters

value

Output The value of the requested options.

session_handle

Input Valid session handle received from a call to StartServer().

SBClient Events

91

options

Input These are the various SBClient client options. Currently, the only supported
options are INSTALLPATH and LASTEVENT.

▪ INSTALLPATH – Returns the path of the working directory for SBClient.
▪ LASTEVENT – See SetOptions().

timeout

Input Optional. If specified, this timeout takes precedence over the timeout specified
in StartServer().

The timeout in this method refers only to the time taken for the client code
method call to return from SBClient. The method will return as soon as
SBClient has sent the request/data to the host, that is it will not wait until the
host receives (or processes) the request/data.

SBClient Events
EventServer()

EventServer(event_type, event_src, event_data)

event_type

Output This can be any of the following: SERVER_STATE, SERVER_EVENT, PROGRESS,
or SCRIPT_DATA. For a description of each, see the list that follows this table.

event_type may be as follows:

SERVER_STATE

The SBClient object generates this type of event when the server identified by a session handle
changes state. The new server state value is delivered with the event in the event_data parameter.

The state value can be one of the following:

1 - READY A READY state is returned when the host server program becomes ready
to receive events. The host program can generate this event using the
TU.SET.SERVER.STATE API with the state parameter set to 1 (see Host interface
section).

2 - BUSY A BUSY state is returned when the host server program becomes busy and
cannot receive events. The host program can generate this event using the
TU.SET.SERVER.STATE API with the state parameter set to 2 (see Host interface
section).

3 - SHUTDOWN A SHUTDOWN state is returned when a session handle becomes invalid (for
example, after the CloseSession() call). The host program can generate this
event using the TU.SET.SERVER.STATE API with the state parameter set to 3
(see Host interface section).

4, 5, 6, 7 As an approximate guide, 4=25%, 5=50%, 6=75%, and 7=100% of logging in or
logging out progress.

SERVER_EVENT

The host program can generate this type of event using the TU.SEND.EVENT API, specifying an event
string appropriate for the implemented protocol.

Chapter 15: SB OLE Server

92

PROGRESS

Returns a percentage value that represents the percentage of completion of a file transfer from the
host to a client PC, or vice-versa.

SCRIPT_DATA

This is used if the script contains a trigger response of [com(data)] where data is user-specified. It can
be used, for example, to respond to an invalid password string. The Visual Basic code can present
a dialog box to ask the user to reenter his or her password, and then send the password with the
following:

' Status = sbc.SendEvent(session_handle, "STRING", newpassword, val)

This [com_data(data)] macro actually enables the Visual Basic program to pick up every trigger
specified in the script and to respond to each one with sendEvent. In other words, the entire script can
be driven from the client program.

event_src

Output All events return the session handle in the parameter that identifies the session
from which this event was generated.

event_data

Output This contains protocol-dependent event information.

Error codes
SBClient can return error codes to the calling code of the client application. Those errors can result
from errors that occurred in SBClient itself, in the host, or in the Windows interface (COM errors).

SBClient Errors

Error code Description

0 This is not an error.
-1 SBClient Server cannot be found.
-3 The configuration could not be read.
-5 Option has not initialized a value or invalid option.
-6 A window handle has not been specified for debug.
-7 It was not possible to create the debug window or an invalid window handle

was passed.
2 Server state=2 - server was not ready to accept the request.
3 Server state=3 - server was not ready to accept the request.
4 Server state=4 - server was not ready to accept the request.
5 Server state=5 - server was not ready to accept the request.
6 Server state=6 - server was not ready to accept the request.
7 Server state=7 - server was not ready to accept the request.

Error codes

93

Host Errors

Error code Description

1 Invalid state or invalid event.

Windows COM Errors

Errors are returned to the method return variable (see fx column in table) or to one of the parameters
(see Param column in table) specified in the method call by the client application code. The following
table lists both types of error return values.

Table 13: Windows COM Errors

Methods OK Timeout Memory Problem Other Reasons

 fx Param fx Param fx Param fx Param
StartServer() Data Data -100 Null -101 Null -102 Null
SendEvent() Data Data -100 Null -101 Null -102 Null
CheckServerState() Data N/A -100 N/A -101 N/A -102 N/A
SetOptions() Data N/A -100 N/A -101 N/A -102 N/A
GetOptions() Data N/A -100 N/A -101 N/A -102 N/A
ShutdownServer() N/A N/A N/A N/A N/A N/A N/A N/A

94

Chapter 16: OE transaction processing
This appendix describes transaction processes in the operating environment.

About Transaction Processing
Transaction processing (TP) combines a set of update operations into a single, logical function so that
the database is maintained in a consistent state throughout an update, even in the event of a system
failure.

This is achieved in the following way:

▪ File updates (writes, deletes) are cached.
▪ All related records remain locked until the transaction is either committed using a TRANSACTION

COMMIT (at which point the modified records are written/deleted as appropriate) or canceled
using a TRANSACTION ABORT (which releases all locks without any records being created, modified
or deleted).

The implementation of transaction processing in SB/XA Application Server relies on the underlying
operating environment to provide the appropriate functionality. This functionality is available on
the UniData (version 3.3.2 and later) and UniVerse (version 8.3.3 and later) platforms, and is subject
to any restrictions or limitations of those platforms. Where the functionality being provided differs
between operating environments, SB/XA Application Server aims to provide the most consistent user
interface possible, so that applications written in SB/XA Application Server can be transferred between
platforms and produce the same results with a minimum of modification.

Before enabling transaction processing in SB/XA Application Server, developers should familiarize
themselves with the appropriate system/operating environment documentation. When considering
the use of transaction processing, developers should also consider the factors discussed in the
following section.

Issues of transaction processing
The following points are intended to alert you to some of the major issues involved in transaction
processing, without trying to cover every eventuality:

▪ The term “transaction processing,” as it is used in n this document, should not be confused with
the Transaction Definition tool provided in SB/XA Application Server. The Transaction Definition
tool merely defines the rules by which data entered in a single screen or set of screens can be used
to update multiple files.

▪ Transaction processing is highly dependent not only on the operating environment, but also on
whether the journal/log/recovery features have been installed and enabled, and whether the files
being updated have been correctly set up for journaling/logging/recovery. These functions are
carried out at the system/operating environment level, not within SB/XA Application Server.

▪ Generally, the journal/log/recovery features of the operating environment are activated on a file-
by-file basis. For each file, you should consider whether associated B-tree, native index, audit, and
other files need to have logging/recovery turned on as well, or whether they can/should be rebuilt
from scratch in the event of a system failure.

▪ For UniVerse, any records to be written or deleted within a transaction must be locked first, either
by a READU or a RECORDLOCKU, and the lock must be set after the TRANSACTION START. An
attempt to write or delete a record that has not been locked first within the transaction causes the
program to abort.

▪ Only WRITE and DELETE statements within the transaction itself (for example, between the
TRANSACTION START and the TRANSACTION COMMIT) can be recovered by the transaction

Enablement, functionality, and examples

95

processing mechanism of the operating environment. SB/XA Application Server does not usually
start the transaction until the screen accept stage, and any updates performed by user routines
before that (for example, through an ‘after field accept’ process or a ‘process after read’) are
not part of the transaction. More importantly, they cannot be rolled back automatically if the
transaction fails during committal or is aborted.

▪ After a transaction becomes active using a TRANSACTION START, every WRITE and DELETE
statement on files for which journaling/logging/recovery is active, until the TRANSACTION COMMIT
(or ABORT) becomes part of the transaction and is rolled back if the transaction is aborted or fails
during commitment.

▪ WRITE and DELETE statements on files for which journaling/ logging/recovery is not active do not
become part of the transaction, are not cached, and are not rolled back even if the transaction is
aborted or fails during commitment. For these files, the action takes place immediately when the
statement is encountered during processing.

▪ UniData does not support nesting of transactions. Accordingly, nested transactions are supported
in SB/XA Application Server only to the extent that issuing a second TRANSACTION START while a
transaction is active does not cause the transaction update to fail. All actions become part of the
one transaction, which are committed (or aborted) by the first TRANSACTION COMMIT (or ABORT).

▪ Transaction processing has been implemented in SB/XA Application Server in such a way as
to assist the developer in avoiding nesting issues. When coding ‘after update’ processes, we
recommend that developers avoid the possibility of allowing users to initiate unrelated updates
(for example, by using ‘slash’ process calls at input prompts) while inside existing transactions, as
all updates become part of a single transaction.

▪ In cases where there is an attempt to nest transactions in user subroutines (for example, where SB/
XA Application Server cannot detect transaction nesting and intervene), the results depend on the
platform. Developers should refer to the appropriate system documentation to learn how nested
transactions are processed in user subroutines.

▪ When including WRITE or DELETE statements in a user subroutine that can be called while a
transaction is active, the user should always code an ON ERROR clause to set RTN.FLAG. If a WRITE
(or a DELETE on platforms that support an ON.ERROR clause for deletions) fails within a user
process and RTN.FLAG is not set, processing continues and the transaction may then be committed
inappropriately.

▪ Avoid using CHAIN because on some platforms (such as UniData) it causes the transaction to abort
and the transaction environment to be reset.

▪ Use EXECUTE with caution as it may have an undesirable effect on transaction processing.
EXECUTE statements in Data/Basic programs are handled differently among platforms. Users
should familiarize themselves with the appropriate system documentation. On UniVerse,
for example, an error message may be displayed on the screen if an EXECUTE statement is
encountered during a transaction.

▪ Logging of updates using input derived fields (also known as input correlatives) is not supported,
as updating of each line is done immediately and not after the screen is accepted.

Enablement, functionality, and examples
You can enable transaction processing on platforms/releases that support it by following the
guidelines listed below:

1. In the SB admin account, set the OE Transactions field to Yes. This field is in SB Control
Parameters, on the Map and OE Trans tab.

Chapter 16: OE transaction processing

96

2. In the System Control Record (/HK.CONTROL), on the OE Transactions tab, set the OE
Transactions field to Yes for each module of each account. When a new module is created, this
field defaults to the same value as the field in the SB admin account.

3. For each process that can update the database, set the OE Transaction field object on the
Process Definition screen to Yes (the field is set to No by default when the process is created).
The following processes can update the database directly:

▪ File updates (PD.F)
▪ Shell processes (PD.H)
▪ Input processes (PD.I)
▪ Transaction processes (PD.T)
▪ Periodic updates (PD.U)

If all three OE Transactions fields are set to Yes (in the SB admin account, System Parameters
module, and process definition record), SB/XA Application Server handles transactions according
to the following table:

Table 14: Transaction Processing in SB/XA Application Server

Process Type Transaction Started Transaction Committed

File Update Before process executed. After process executed.
Shell Process After screen accepted (if screen

used). See note 1 below.
Before any processes executed.

Input Process After ‘Screen Accept’ but before
‘After Update’. See note 2 below.

After ‘After Update’. See note 2
below.

Transaction
Processes

Real Time Before each (primary) record read. After secondary file and B-tree
updates for primary record.

Enablement, functionality, and examples

97

Process Type Transaction Started Transaction Committed

Batch Header When header screen filed (F2) and
each time the batch record is filed.
See note 3 below.

After header screen filed and each
time the batch record is filed. See
note 3 below.

Batch Entry After ‘Screen Accept’ but
(transaction entry screen) before
‘After Update’. See note 2 below.

After ‘After Update’. See note 2
below.

Batch Posting Before each (primary) record read. After secondary file and B-tree
updates for primary record.

Periodic Update Before each (primary) record read. After secondary file and B-tree
updates for primary record.

Note:

Transaction logging applies only to updates caused by a screen attached to the shell process;
SB/XA Application Server does not log updates resulting from the shell process itself.

This is the screen ‘After Update’, not the ‘Process After’ on the process record.

After the initial header record has been created, it is updated for each SB/XA Application
Server transaction entered or deleted. The operating system logs the updating of the header
record as part of the batch detail entry. When the batch is posted, the processes before and
after posting are not included in any of the transactions. In the unlikely event that either
of these processes also updates recoverable files, it is up to the developer/user to log the
changes.

When a file update (PD.F) is called from a periodic update or a transaction process, the calling
process overrides the file update if the calling process has the flag set but the file update does
not. However, the file update overrides the calling process if the calling process does not have
the flag set but the file update does. In other words, if the transaction processing flag is set on
either the file update process or the calling process, transaction processing occurs (provided
that the flags are also set in the SB administration account and the current module).

When transaction processing is applied to a periodic update (PD.U), each logical ‘set’ of
updates (record in primary file, records in secondary files, and associated B-tree records) are
treated as a separate transaction. Effectively this is no different from executing a file update
process with an active select list.

Regarding transaction processes (PD.T), each SB/XA Application Server transaction becomes
a system transaction. In batch mode, updating the batch header and the final setting of the
‘post’ flag are also separate system transactions.

4. In addition to the OE Transactions flag at each of the three levels described above, there are
two additional fields: Warn on Error and Process on Commit Failure. These are also provided at
each of the three levels. However, the handling of these two fields differs slightly from the OE
Transactions flag. SB/XA Application Server assesses each level in turn (first the current process
record; next the System Control record in this module; and finally the SB Control Parameters
record in SB admin account) until it finds a non-null value. It then uses that value when any
processing decisions are required. If the field is empty at all three levels, the defaults (No Warning
and No Process, respectively) are taken. With the OE Transactions flag, the field must be set
to Yes at all three levels for transaction processing to be active for the current screen/update
process.
With the Warn on Error flag set to Y, SB/XA Application Server displays a standard error message
in the following circumstances:

▪ If attempting to start a transaction when one is already active, the message is:

Chapter 16: OE transaction processing

98

WARNING: TRANSACTION ALREADY ACTIVE, ATTEMPT TO START SECOND
TRANSACTION IGNORED

▪ If TRANSACTION START returns false at the system level, the message is:
ERROR: TRANSACTION INITIATION FAILED, STATUS: n
where n is the status returned by the operating environment.

▪ If TRANSACTION START succeeds but SB/XA Application Server cannot relock the record, the
message is:
ERROR: LOCK LOST FOR RECORD ‘k’
where k is the current value of KEY (but SB/XA Application Server has the record locked
already, so this should never happen).

▪ If attempting to COMMIT or ABORT a transaction when one is not already active, the message
is:
WARNING: NO TRANSACTION ACTIVE, CANNOT ‘a’
where a is ABORT or COMMIT, as appropriate.

▪ If attempting to write a record with a NULL key, the message is:
ERROR: KEY IS NULL, CANNOT COMMIT TRANSACTION

▪ If TRANSACTION COMMIT returns false at the system level, the message is:
ERROR: TRANSACTION COMMIT FAILED, STATUS: ‘n’
where n is the status returned by the operating environment.

The default is ‘N’o warning, in which case it is up to the developer to test the status of RTN.FLAG
and issue any messages required. The values returned by RTN.FLAG are described later in this
document.
If the Process on Commit Failure field contains the name of a valid process, or any of the
standard alternatives SB/XA Application Server accepts — such as paragraph statements within
the ‘P:(...)’ format or an SB/XA Application Server expression that resolves to a process name —
SB/XA Application Server automatically executes that process if the commit fails.
This applies only to situations in which the TRANSACTION COMMIT statement fails. If RTN.FLAG
is already set or KEY is NULL, no attempt is made to perform a TRANSACTION COMMIT and hence
the Process on Commit Failure process is not executed.

5. In order to use UniData’s Recoverable File System (RFS), it is necessary to create the file with the
‘recoverable’ keyword. Accordingly, SB/XA Application Server running on UniData has an extra
field/prompt on the FC (file create) screen to allow the user to nominate the file as ‘recoverable’.
If a data file is created as recoverable, the associated .INDEX and .AUDIT files may also need to be
recoverable if and when they are created. Provided that they are created through the appropriate
SB processes and if transaction processing is active for the current module in UniData, the
user is prompted to indicate whether the associated file should be made recoverable when
the associated file is being created. The response to the prompt Enable OE Transactions (Y/
N) defaults to the status of the parent data file, which can be determined from running udfile.
Conversion of existing UniData files to ‘recoverable’ using the ‘udfile’ Unix command supplied by
UniData is described in the UniData system documentation.

6. In UniVerse, it is possible to tell from Data Basic whether a file is recoverable (by using FILEINFO
or by examining the UV.TRANS file), but it is not possible to force a file to be created with logging
enabled. Therefore, if transaction processing is active for the current module, the user is simply
reminded to consider whether logging should be enabled (at the system/operating environment
level) after the file has been created.

Note: The program ACTLIST.B, supplied in APP.PROGS, can be used to activate logging for
specific files. To use this program, you must be within the UniVerse home account and be
logged on as ‘root’.

7. If using the SB/XA Application Server revision control feature to upgrade one account from
another (either directly or using tape), new files created using the ‘Load/Perform Revision’
process are created as ‘recoverable’ in UniData only under the following conditions:

Enablement, functionality, and examples

99

▪ the file was ‘recoverable’ in the account in which the revision media was made; and
▪ the account/module being upgraded has transaction processing enabled.

If the new account does not have transaction processing enabled, a warning is issued.
Because UniVerse does not allow you to create a file with logging enabled, an appropriate
warning is issued, depending on whether the original file is ‘recoverable’ and whether
transaction processing has been enabled in the new account.

8. Paragraph processes (PD.P) are also able to update the database, using the WRITE and DELETE
statements, but in this case the change has been to the paragraph syntax, not the addition of a
flag. Transaction processing is implemented using the following paragraph statements:

▪ TRANSACTION START. Starts a transaction. Sets the RTN.FLAG to 1 if transaction was already
active, or X if transaction could not be started.

▪ TRANSACTION COMMIT. Commits a transaction. Sets RTN.FLAG to 1 if no transaction was
active or KEY was null, or X if transaction could not be committed.

▪ TRANSACTION ABORT. Aborts a transaction. Does not change the value of RTN.FLAG. This
statement is executed only if a transaction is still active.
The SB paragraph ‘@’ variable: @TRANSACTION, which is set to 1 while a transaction is active,
otherwise it returns 0.

Note:

 This is the same as the @TRANSACTION system variable in UniData, but differs from the
@TRANSACTION system variable in UniVerse.

When any paragraph statement is executed successfully, RTN.FLAG is not normally (re)set,
so it should be 0, assuming that it was 0 before the statement was executed. When coding
the paragraph, it is the developer’s responsibility to check the status of RTN.FLAG before
proceeding with any TRANSACTION statements.

When logging WRITEs and DELETEs, the developer should consider whether WRITEIs and
DELETEIs also need to be logged (for example, be placed between the TRANSACTION
START and COMMIT).

In file updates (PD.F), shell processes (PD.H), input processes (PD.I), transaction processes
(PD.T), and periodic updates (PD.U), SB/XA Application Server handles transactions as follows:

Logic for Initiating a Transaction
▪ Global flag must be set.
▪ Module flag must be set.
▪ Process flag must be set.
▪ Transaction must not be active already (the @TRANSACTION system variable must be 0).

TRANSACTIONS.ENABLED = (GLOBAL.FLAG AND ACCNT.FLAG AND
PROCESS.FLAG)
IF TRANSACTIONS.ENABLED THEN
IF @TRANSACTION THEN
 RTN.FLAG = 1
 IF warn-on-error THEN CALL SB.DISP(3, error “a”)
 END ELSE
 TRANSACTION START THEN
 RECORDLOCKU F.FILE, KEY ON.ERROR
 RTN.FLAG = ‘X’
 IF warn-on-error THEN CALL SB.DISP(3, error “c”)
 TRANSACTION ABORT
 END LOCKED
 RTN.FLAG = ‘X’

Chapter 16: OE transaction processing

100

 IF warn-on-error THEN CALL SB.DISP(3, error “c”)
 TRANSACTION ABORT
 END
 END ELSE
 RTN.FLAG = ‘X’
 IF warn-on-error THEN CALL SB.DISP(3, error “b”)
 END
 END
END

Note: For some platforms (such as UniVerse), every record that is to be updated must be
locked after the TRANSACTION START is executed. The RECORDLOCKU statement can be used
to reacquire existing locks if necessary. In particular, for updates following screen accepts it
is necessary to reacquire locks that were set at the READU step, before the transaction was
started. SB/XA Application Server does not provide the RECORDLOCKU statement automatically
for a TRANSACTION START in a paragraph statement, because record locking is generally the
responsibility of the developer in this situation. However, if a TRANSACTION START is issued
a paragraph and MAINFILE and KEY are both non-null, SB/XA Application Server attempts to
RECORDLOCKU record KEY in F.FILE.

Logic for Committing a Transaction
▪ Transaction must be active (the @TRANSACTION system variable must be nonzero).
▪ KEY must have a value.
▪ RTN.FLAG must not be set.

IF TRANSACTIONS.ENABLED THEN
 IF @TRANSACTION THEN
 BEGIN CASE
 CASE RTN.FLAG = 1 OR RTN.FLAG = ‘X’
 TRANSACTION ABORT
 CASE KEY = “
 TRANSACTION ABORT
 RTN.FLAG = 1
 IF warn-on-error THEN CALL SB.DISP(3, error “e”)
 CASE 1
 TRANSACTION COMMIT ELSE
 RTN.FLAG = ‘X’
 IF warn-on-error THEN CALL SB.DISP(3, error “f”)
 IF process-on-commit-failure > “ THEN
 CALL SB.PROCESS(process-on-commit-failure)
 END
 END
 END CASE
END ELSE
 IF NOT(RTN.FLAG) THEN
 RTN.FLAG = 1
 IF warn-on-error THEN CALL SB.DISP(3, error “d”)
 END
 END
END

Automatic testing of RTN.FLAG before a TRANSACTION START or COMMIT does not apply to paragraph
statements. When coding the paragraph, the developer must check the status of RTN.FLAG before
proceeding with any TRANSACTION statements.

	Documentation library
	Contents
	Chapter 1: Conversion codes
	Output Conversions
	Date
	Time
	Mask decimal
	Mask character
	Mask hexadecimal
	File translate
	Text translate
	Group extract

	Input Conversions
	Date
	Time
	Mask decimal
	Mask character
	Mask hexadecimal
	File translate
	Group extract

	Chapter 2: COMMON variables
	Section one
	Section two
	Section three
	Notes
	Note 1
	Note 2
	Note 3
	Note 4
	Note 5

	Chapter 3: Terminal definition variable
	Fields in the Terminal Definition
	Edit key numbers

	Chapter 4: Printer definition variable
	Fields in the Printer Definition

	Chapter 5: General processes
	General Processes
	Function keys

	Chapter 6: General subroutines
	SB.CALL.METHOD
	SB.CALL.STATIC.METHOD
	SB.DATECONV
	SB.DISP
	SB.DISP.BOXTEXT
	SB.EVAL.EXP
	SB.EXECUTE
	SB.FILEVAR.S
	SB.INPUT
	SB.OPEN.FILE
	SB.PRESERVE.COM
	SB.PRESERVE.DATA
	SB.PRINT.BOX
	SB.PROCESS
	SB.READ.BTREE
	SB.REPLACE
	SB.SET.COMMON
	SB.STACK.EXP
	SB.STACK.SCREEN
	SB.TEXT.EDITOR
	SB.UPDATE.BTREE
	SH.SEC.API
	SH.VERIFY.USER
	UT.GUI.TREE
	UT.QPNTR

	Chapter 7: Special report variables in report definitions
	Report Variables

	Chapter 8: Stamp attributes in revision control
	Stamp Attributes

	Chapter 9: Log file (OTHER.REC) layout in job scheduling
	Log file layout

	Chapter 10: Screen refresh procedure
	Screen refresh procedure
	Notes

	Chapter 11: DDE implementations in SB/XA Application Server
	DDE and SB/XA Application Server
	DDECONNECT TO <exp1> RETURNING <handle> [WITH PATH <exp2> [MODE <exp3>]]
	DDEDISCONNECT FROM <hexp>
	DDEREAD <var> FROM <hexp> USING <exp1>
	DDEWRITE TO <hexp> USING <exp1> SENDING <exp2>
	DDEEXECUTE TO <hexp> SENDING <exp1>
	DDEGETERROR FROM <hexp>

	Chapter 12: Aspects of GUI conversion
	Notes on GUI Conversion

	Chapter 13: CEO example
	CEO code example

	Chapter 14: GUI classes and their attributes
	Classes and their attributes
	Attribute Descriptions

	Chapter 15: SB OLE Server
	About SB OLE Server
	Components of SB OLE Server
	SB
	OLE
	Server

	Using SB OLE Server

	Host Interface
	SB/XA Application Server Interface
	SBClient Methods
	StartServer()
	ShutdownServer()
	SendEvent()
	CheckServerState()
	SetOptions()
	GetOptions()

	SBClient Events
	Error codes

	Chapter 16: OE transaction processing
	About Transaction Processing
	Issues of transaction processing
	Enablement, functionality, and examples

